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Preface 
The CONRO Project has a goal of providing the warfighter with a miniature reconfigurable robot that can be 

tasked to perform recoimaissance and search and identification tasks in urban, seashore and other field 
environments. CONRO is made from small and identical modules that can be programmed to alter their 
topological connections and form different configurations in order to respond to environmental challenges such 
as obstacles and unexpected situations. 

Work on the project was imdertaken between June 1998 and September 2002 by the Information Sciences 
Institute at the University of Southern California at Marina del Rey under U.S. Army contract number C- 
DAAN02-98-C-4032. 

A warfighter is vulnerable when entering closed environments or looking around comers. An enemy may 
attack at any time. A method of progressing is to direct an expendable surrogate to enter the closed room or go 
around the comer and send back surveillance information that will indicate whether or not forward progress is an 
option. This project was conceived to develop such a self-mobile sensor platform that would perform as a tool for 
the dismounted warrior that was light enough to be carried to battle and be deployed in hazardous situations. 
These situations include house-to-house urban warfare or fighting in Afghan caves where the warrior could stay 
behind a wall or outside the cave and send the surrogate to scout out the situation to sense the presence of bad 
guys. The intention was that the warfighter would control the system remotely and would send it into the hostile 
space to report back on what was observed in its package of sensors. The sensors carried on the platform can 
include normal and infi-ared spectmm video, seismic, temperature, barometric pressure and many other 
modalities. The Warfighter was to command the robot using a pointer interface implemented on PALM Pilot- 
style Personal Digital Assistant (PDA) and sees the sensory data on the PDA screen. 

These scenarios, urban warfare and caves, both contain rubble. The ability to climb over, under and squeeze 
through mbble is an important ability. Conventional wheeled robots are severely restricted in their ability to 
operate in these environments. CONRO handles such environments by automatically shifting its shape to suit the 
type of terrain encountered. It was designed to operate with legs as a crab or insect while on flat terrain but has 
the ability to transform its shape to a snake to use a slithering action to slide through piles of stones to get to its 
target. 

During the three years of the project, USC/ISI has built twenty CONRO modules and accomplished many 
novel experimentations and demonstrations. Each CONRO module has two batteries, one micro-controller, two 
servos, four docking connectors, and four sets of infi-ared sensors and emitters for communication and docking 
guidance. Some modules also have micro-camera, tilt and touch sensors, and wireless communications. These 
modules can be configured into snakes, insects, centipedes, caterpillars, rolling ti-acks, etc., and all configurations 
are capable of locomotion. The top speed of the robot is currently 0.6-1.0 mph and it is improving continuously. 
We have also developed novel control software systems for self-reconfigurable robots, including the biologically 
inspired and distributed method called Digital Hormones (US Patent Pending), the role-based control, and the 
human-centered control using gloves and hand-held devices. The CONRO robots can perform many metamorphic 
actions, such as online bifurcation, unification, and behavior-shifting, that have not been reported previously in 
robotics literature. In certain configurations, CONRO can also complete reconfigurations without any human 
interventions. At the present time, a CONRO sidewinder robot can also move over rough terrain such as pebbles 
or small obstacles. 

IX 



Summary 
The CONRO project was conceived as a response to a BAA from DARPA in their Distributed Autonomous 

Program. The specific exciting challenge defined there was to go through a keyhole and pick the lock. The 
technical challenges of such a task that are not surmountable even today, inspired us to make the smallest most 
functional robot possible that could cross the terrain to the door, reach a narrow aperture (the lock) squeeze 
through and continue advancing across the terrain to the objective. Such a task requires self-reconfiguration 
either from sensing the environment or on command from the Warfighter using it and the issues of how to do 
command control and self-reconfiguration became the focus of the effort and is described in detail in the body of 
this report. 

We designed and built a set of modules 1" square cross section and 4 " long that had docks at each end to 
allow connection to become a variety of functional robotic shapes. We used the best available physically and 
computationally small low power microprocessor or we could find to power the system and accepted its 
limitations in power and functionahty in order to show early success in moving and reconfiguring. 

We drove the system from a central machine (a set of interacting Unix processes) to fiilly distributed control 
using the Hormone system we describe in the body of this report. We commanded the system from a keyboard 
and by using Virtual Reality gloves and a simple set of hand-motion commands but always with an eye towards 
as autonomous a behavior as possible in order to relieve the Warfighter from the task of the detailed running of 
the robot when he/she needs to keep hidden to avoid being shot at. 

The work progressed from being able to move at snail pace with one configuration to the current work on 
increasing the speed beyond 1 mph in the multi-legged insect (or spider) mode, beyond 0.5 mph in snake 
slithering or sidewinder modes. The system has gained a 40x increase in speed over the last two years. This has 
been accomplished by the substantially same prototype hardware, but used with better algorithms of all kinds. 

We have traveled across smooth and 2"-diameter pebbled terrain that meets some of the requirements of 
operating in a desert. We built and installed sensors of several kinds as a start towards an instrumented package 
that would relay information back to its Warfighter controller. We built, for instance, a small camera using a 
state-of-the-art CMOS chip for image feedback, we used sensors from Virtual Reality gloves as cats whiskers to 
sense impending collisions with the environment and even upside-down sensors for use in righting itself in 
clambering over rocks. We demonstrated autonomous reconfiguration, the first, we believe, in the literature on 
robots. 

The work so far has successfiilly shown the feasibility of the many concepts needed for a research prototype 
of a self-reconfigurable robot. Now the task is to build an engineered prototype for deployment under the control 
of a Warfighter in the dust and mud of a real field test. 

XI 



CONRO: SELF-RECONFIGURABLE ROBOTS 

1   Introduction 
The CONRO self-reconfigurable robots are built in the context of self-reconfigurable robots. Self- 

reconfiguration in both physical and tactical sense is a new and critical capability for many future military and 
civilian applications. Tactically, self-reconfiguration will allow Unmanned Air Vehicles (UAV) or Unmanned 
Ground Vehicles (UGV) to restructure and self-repair their organization in unexpected situations, and will enable 
information agents to adjust their relationship to gather timely information. Physically, self-reconfiguration will 
allow robots to change shapes and sizes for difficult missions, enable smart materials to morph into different 
structures for best performance, and facilitate the self-assembly in space and support missions such as DARPA's 
Orbital Express and AFOSR's micro satellites. In naval applications, submarines and aircraft carriers may be 
equipped with self-reconfigurable robots for inspection and repair, and they can maneuver in tight spaces that are 
hard to reach by humans or conventional robots. In a marine reconnaissance mission, an underwater self- 
reconfigurable robot may become an eel for swimming in open water, change into an octopus for grasping rocks 
when enter a high-energy surf zone near coast, and then spread it out as a set of small and hard-to-detect moving 
units once on shore. In Army's Future Combat Systems, self-reconfigurable robots can form massive and 
relentless robot swarms in large-scale operations, or small scout forces with shape-alteration ability to inspect 
dangerous caves in enemy territory. 

The CONRO metamorphic robot is made from a homogeneous set of autonomous reconfigurable modules 
that can change their physical connections and configurations under computer or human command to meet the 
demands of the environment. Each CONRO reconfigurable module has a size of 1.0 inch^ cross-section and 4.0 
inch long and is equipped with a micro-controller, two servo motors, two batteries, four connectors for joining 
with other modules, and four pairs of infrared emitter/sensor for communication with neighboring modules and 
docking guidance. These modules are autonomous and self-sufficient and they have the docking capability and 
can connect and disconnect with each other and form various shapes. Figure 1 shows a number of CONRO 
configurations and self-reconfigurable robots, including single module in a human hand, two 9-module six-legged 
insects, an 8-module rolling track, and an 8-module self-reconfigurable robot in moving as a serpent (lateral 
undulation), a caterpillar (concertina), a sidewinder, and a coiled snake. 

Ultimately, a CONRO self-reconfigurable robot can slither down between stones to locate a person or some 
artifact, and then smoothly morph to become a "crab" and climb over rubble. It can become a ball to roll down a 
hill, or a leg can be transformed into a gripper to perform a grasping operation. Using novel control approaches, 
such as digital hormone model [2,3,10,12,15] and role-based control [5-7], the CONRO robots can at the present 
time perform online bifurcation, unification, and behavior-shifting that are unique for reconfigurable systems. 
There is no fixed "brain" module in the CONRO robot, and every module behaves properly according to its 
relative position in the current configuration. For example, a moving CONRO self-reconfigurable robot can be 
bifurcated into pieces, yet each individual piece will "elect" a new head and continue to behave as an 
independent snake. Multiple snakes can be concatenated (for unification) while they are running and become a 
single and coherent snake. For online behavior shifting, a tail/spine module in a snake can be disconnected and 
reconnected to the side of the body, while the system is running, and its behavior will automatically change to a 
leg (the reverse process is also true). For fault tolerance, if a multiple legged robot loses some legs, the robot can 
still walk on the remaining legs without changing the control program. The CONRO robot can also perform self- 
reconfiguration in certain configurations. Figure 2 shows the steps of reconfiguration from a snake shape to a 
two-legged creature that can do a locomotion gait similar to the two-arm butterfly stroke in swimming. This is 
probably the first time any robot was shown to perform such a metamorphic action using a totally distributed 
control method. 



Figure 1. CONRO modules and configurations of insects, rolling track, and snakes. 

Figure 2. A CONRO Robot self-reconfigures into a Butterfly-Stroke Walker. 

It is a great challenge to construct and control a self-reconfigurable system such as CONRO. Each module in 
the robot IS an autonomous and intelligent agent itself, and has power, controller, sensors, motors, connectors 
and communication devices. These modules must cooperate their actions to generate the desired global effects for 
a given physical configuration. The concept of configuration can be interpreted m several ways. The physical 
mterpretation is that it represents the structure or shape of the system. The connectivity interpretation is that it is 
a commumcation network topology. The control implication is that global actions (such as locomotion for a 
robot) require a re-computation of the local actions to be executed by the individual modules. These local actions 
depend on the position of the agent in the current configuration. We have focused on two general problems for 



self-reconfigurable systems: (1) how agents communicate with each other where connections and configurations 
may change dynamically and unexpectedly, and (2) how agents collaborate local actions in the physically and 
tactically coupled organization. These two problems occur in many types of self-reconfigurable systems, and are 
critical to build a multifunctional self-reconfigurable robot. Note that ultimately the cooperative control in a 
multifunctional robot must be dynamic, to deal with the changes in organizational configuration and topology; 
asynchronous, to compensate for the lack of synchronized global clock shared by all components; scalable, to 
support ever-growing structures and shape-alteration; collaborative, to enable global efforts by local actions in a 
physically and tactically coupled organization; reliable, to recover from local damages and provide fault- 
tolerance; and finally, self-adaptive, to select and form the best configuration for the task and environment in 
hand. 

The control in CONRO robots is based on a bio-inspired distributed method we call the Digital Hormone 
Models (DHM) (US Patent pending). The basic idea of DHM is that components in a robot form a dynamically 
networked organization and use hormone-like messages to communicate and collaborate global behaviors such as 
locomotion, tactic formation, self-reconfiguration, and self-repair. The hormone-like messages are similar, but 
not identical, to content-based messages. They do not have addresses but propagate through the network (note 
that hormone propagation is different from message broadcasting). There is no guarantee that every component in 
the network will receive the same copy of the original message because a hormone may be modified during its 
propagation. Hormones are also similar, but not identical, to pheromones because hormones can propagate from 
cell to cell without leaving residues in the environment. This provides a more convenient way to represent 
topological constraints between elements of an organization. In DHM, all components run the same control 
program and react to hormones based on where they are in the current configuration. For example, when 
receiving the same hormone, a leg module may retract, while a torso module may bend. Thus, a single hormone 
may propagate in the network and cause different body parts to perform different actions. This DHM has been 
successfully applied to the CONRO robots, including the snake configuration, and many other legged 
configurations. It is proved to be distributed, dynamic, robust, and efficient (running on the STAMP controller 
which has only 2K memory and 64 Bytes for variables). For more information about the digital hormones, please 
see our website http://www.isi.edu/conro. 



2   Hardware Description 
The goal of the CONRO project is to build deployable modular robots that can reconfigure into different 

shapes such as snakes or hexapods. Each CONRO module is, itself, a robot and hence a CONRO robot is actually 
a multi-robot system. In this section we present an overview of the CONRO modules, the design approach, an 
overview of the mechanical and electrical systems and a discussion on size vs. power requirement of the module. 
Each module is self-contained; it has its own processor, power supply, communication system, sensors and 
actuators. The modules, although self-contained, were designed to work in groups, as part of a large modular 
robot. We conclude the section by describing some of the robots that we have built using the CONRO modules 
and describing the miniature custom-made CONRO camera as an example of the type of sensors that can be 
carried as payload by these robots. 

2.1 Background 
Reconfigurable robots are modular robots that can change their shape. These robots could be used in 

applications that would benefit from the use of different or multiple fixed-size fixed-shape robots. A 
reconfigurable robot could change its shape into a snake to reach into narrow places during a rescue operation, 
into a hexapod to carry a load or it may split into many smaller robots to perform a task in parallel. 

Reconfigurable robots are classified as homogeneous or heterogeneous depending on whether their modules 
are identical or not. In a homogeneous robot, the position of the module in the robot defines its function, e.g., the 
module could play the role of head, leg or spine depending on its location in the robot. In a heterogeneous robot, 
the function of the module defines its position in the robot, e.g., the possible positions of a leg module are 
restricted to the legs of the robot. 

Reconfigurable robots can also be categorized according to whether or not their modules are organized in a 
lattice (either in the plane or 3D space). Lattice-based robots are usually homogeneous and need to reconfigure 
in order to move, i.e., as their topology changes, their center of mass translates accordingly. In contrast, non- 
lattice robots can either translate while reconfiguring or can separate their reconfiguration and locomotion stages. 
This separation allows them to reconfigure and then select an efficient configuration-dependent gait. 

The original reconfigurable robots were designed to add versatility to the robotic manipulator. Early work by 
Will and Grossman, Schmitz et al., and Fukuda and Kawauchi continues to evolve in the work of Paredis and 
Khosla and others. Among the planar lattice-based cellular robots we find the robots based on square and 
hexagonal modules of Yoshida et al., and Murata et al., respectively, and the robot based on hexagons of links of 
Chirikjian et al. This work has been extended to 3D space, among others, by the cubic units of Murata et al., the 
robotic molecule of Kotay et al., the crystal module of Rus and Vona and the "I-Cube" modules by Unsal et al.. 
Most non-lattice based reconfigurable robots are heterogeneous. Among these we find the robots for the 
entertainment industry of Fujita et al., and those for space exploration of Farritor et al.. 

In this section, we describe the design approach and the mechanical and electrical aspects of the modules of 
the CONRO robots, non-lattice homogeneous reconfigurable robots, targeted to search and rescue and 
surveillance operations. The CONRO robots have some similarities with the Tetrobot of Hamlin and Sanderson. 
Both are homogeneous and can separate their locomotion and reconfiguration stages. However, the Tetrobot must 
be tethered while the CONRO robot is self-contained. CONRO robots are also similar to the Polypod of Yim in 
both capabilities and concept. However, CONRO robots emphasize size and autonomy as design parameters and 
are designed to support inter-robot reconfiguration, i.e., reconfiguration that involves more than one robot and 
leads to the merging of robots into a larger one or the splitting of a large robot into smaller ones. 

This section is organized as follows. In subsection 3.2, we summarize the philosophy behind the design of 
the module. In subsections 3.3 and 3.4 we describe the design of the module from the mechanical and electrical 
points of view, respectively. In subsection 3.5 we discuss the considerations of the module with respect to its 
size. In subsection 3.6 we describe the resulting module and give some examples of the possible CONRO robot 
configurations. In subsection 3.7 we present the miniature custom-made CONRO camera built which is an 
example of the sensors that a CONRO robot could carry as load. 



2.2  Philosophy of Hardware Design 
The goal of the CONRO project is to build deployable reconfigurable robots that exhibit inter-robot 

reconfiguration capabilities. The capabilities of these robots are determined by the characteristics and 
functionality of their modules. The basic shape of the CONRO modules is that of three segments connected in a 
chain, as shown in Figure 3. Two independent axes of rotation, located at the intersections of these segments, 
provide the module with motion capabilities. 

Frontal connection 

Figure 3. Basic shape of a CONRO module 

The extremes of each module have ports (one on each shaded face) that allows it to connect to other 
modules. A detailed discussion about the philosophy of design of the CONRO module can be found in 
\cite{ARCasOO}. The summary in this section is presented for completeness of the section. 

The specifications of deployability and inter-robot reconfiguration capabilities translate into constraints on 
the levels of self-sufficiency, autonomy and homogeneity of the module, module size and communication 
capabilities. A deployable robot must be self-sufficient, i.e., capable of imtethered operation. Li the trivial case, 
an inter-robot reconfiguration split operation may create a robot formed by a single module. Therefore, to 
guarantee that any robot such created is self-sufficient, each module must be self-sufficient. Likewise, a module 
must be autonomous with respect to the use of its own resources, e.g., it has exclusive access to its sensors and 
actuators. 

The level of homogeneity of a module determines its capabilities and the functions that it can fulfill. Each 
module must have a processor, power, sensors, actuators and cormnunication systems to satisfy the self- 
sufficiency and autonomy constraints. Other components not needed to satisfy these constraints (e.g., cameras, 
antennas) can be carried by the robot as a load or are piggy-backed on a particular module, driven by a generic 
interface port. This trade-off between the necessary and desired components of a module reduces its design, 
manufacturing, testing and programming costs. All the components must fit into a package that is as small as 
possible to reduce the effect of inertia of the limbs and increase the relative torque-to-robot weight ratio of the 
actuators. 

Finally, we address the communication needs of the module. During inter-robot reconfiguration, two robots 
need to communicate remotely to agree on the merging operation. Thus, robots need to exchange information 
remotely and need a mechanism to guide another robot toward itself. At the local level, each module needs to 
communicate with its adjacent modules. We concluded that an infrared-based system could satisfy all these 
requirements; it could be used for both remote and local commimication and double as the directional guiding 
mechanism for both inter-robot and intra-robot dockings. 

2.3 Mechanical Design 
Our implementation of the CONRO module has three segments connected in a chain: a passive connector, a 

body and an active connector, as shown in Figure 4. At the intersection of the body and the two connectors there 
are joints that give the module yaw and pitch degrees of freedom. The weight of the module is Wm= 114g 



(including batteries) and its length is L,„ = 10.8cm excluding the length of the pins protruding from the passive 
connector. We now describe the parts of the module. 

1/0 board Yaw servo      Processor board 
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module body acuve connector 

Figure 4. Parts of the CONRO module 

2.3.1 The Module Body 
The body is the central part of the module to which the active and passive connectors attach. It is composed 

of a delrin frame, two servo motors and a printed-circuit board (PCB), shown in Figure 4 as the Processor Board. 
The PCB has a hole in its center to allow its accommodation on the frame. When it is in place, the PCB is 
screwed in position to the frame. The servos fit into cavities of the frame and are held in place by friction. 

Commercial-off-the-shelf servos for radio-controlled devices (Futaba S3102 RC servos) are connected 
directly to the processor board using 3-pin connectors. Two of the pins provide power to the servo and one 
carries a pulse width modulated (PWM) signal that defines the position of the shaft. Each servo has a torque of x^ 
= 3Jkg-cm, and weighs W^ = 2\g, mainly because of the weight of their metal gears, i.e., the servos account for 
36% of the weight of the module. The output shafts of the servos are connected directly to the active and passive 
connectors in a direct drive fashion. The processor board is a two-layer PCB with surface-mounted components 
that distributes the control signals and power to the rest of the module and serves as holding place for a small 3v 
battery. 

2.3.2 The Passive Connector 
The connectors allow the module to attach to other modules. The passive connector has no moving 

components. Its frame is a cube of delrin with a side of 2.54 cm as shown in Figure 4. Three lateral faces of the 
cube have two protruding aluminum pins that fit into the sockets of the active connectors of other modules. The 
cylindrical pins have a lateral groove to allow the active connector to anchor to them. The particular positions of 
these pins and sockets permit only connections of modules that lie in the same plane, i.e., modules that are tilted 
90 degrees with respect to each other cannot be connected. On each of these faces there is an infrared (IR) pair 
used by the module for communication and docking. The fourth lateral face of the cube has a tongue that fits on a 
fork of the body and allows the module to pivot the connector about the yaw axis. The yaw servo is unbiased with 
respect to the main axis of the module, i.e., the passive connector can rotate the same angle in the right and left 
directions (about 60 degrees). 

The frame of the passive connector is hollow and holds the wiring of the infrared devices of the faces and 
the main battery of the module, a 6v battery (9g, 2.5cm height, 1.3cm diameter). The roof of the cube is a two- 
layer PCB that is screwed directly onto the cube. This PCB has the input-and-output (I/O) electronics that drive 
the infrared receivers (RX) and transmitters (TX) of the faces of the connector and doubles as the positive 



contact for the battery. A 14-pin connector is used to transfer the power of the main battery to the processor 
board and receive the control signals for the IR components. Finally, the connector has a latch at the bottom of 
the cube that keeps the battery in place and serves as its negative contact. The latch can swing about one of its 
extremes allowing the removal of the battery. The weight of the passive connector, including the battery, is 30g. 

2.3.3   The Active Connector 
The active cormector engages and disengages the pins of the passive connectors of other modules. It weighs 

15g and is composed of two parts, an arm and a face, both machined in delrin, as shown in Figure 5. The body of 
the module is connected to tiie active connector by the arm. The active connector can rotate about a pitch axis 
located at the intersection of the arm and the body. The pitch servo is biased with respect to the main axis of the 
module; it can rotate 90 degrees downwards but only 30 degrees upwards. This bias allows the module to behave 
as the leg of a walking robot. 

The face of the active connector has the same dimensions as those of the faces of the passive connector. It 
also has an infrared pair but the locations of the transmitter and receiver are the reverse of those of the faces of 
the passive connector to allow communication between modules when two modules are connected to each other. 
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Figure 5. Stages of the docking procedure: (a) Engagement; (b) Disengagement. 

The process of connecting two modules involves the active and passive connectors of the modules. Figure 
5a shows a simplified view of a passive connector approaching an active connector in a docking trajectory. The 
active face has two sockets to receive the pins of the passive face. As the pins slide inside the sockets, their 
dome-shaped heads force an engagement latch to rotate in a direction perpendicular to the trajectory of the pins. 
Eventually, the pins are fully inserted exposing a lateral groove into which the engagement latch edge is forced 
by a spring action (the spring is not shown in the figure). This docking process is completely mechanical. 

The process of disconnecting two modules is initiated by the active face. As shown in Figure 5a, the 
engagement latch can be rotated using a shape-memory alloy (SMA) wire. The wire is attached between a fixed 
binding post and a cylinder attached to the latch. We use two rollers to establish the path of the SMA wire and to 
extend its working length. When the SMA is contracted, it rotates the cylinder clockwise, against a spring, 
retracting the latch and freeing the pins. Using this procedure we could fi-ee the pins at any moment. However, 
fi-eeing the pins is not the same as disconnecting the modules. The SMA can be activated only for a fi-action of a 
second because it consumes a large amount of power. Thus, it is possible that the modules fail to move away 
fi-om each other before the SMA is de-energized, re-engaging the pins. 

The disconnection process must guarantee that the modules will be fi-ee when it is finished. In Figure 5b we 
show the faces of two already coimected modules. We have added a view of the disengagement latch, a plate with 
two holes that, during engagement, allows the heads of the pins to go through. When the modules are connected, 
the edge of the engagement latch is pressed against the pins, into their grooves. To disconnect the modules, we 
contract the SMA wire as described before. As both latches rotate together, first the engagement latch fi-ees the 
pins and then, the disengagement latch pushes the dome-shaped head of the pins out of the sockets. The distance 
that the latch pushes the pins is of the order of 0.125/M/M. Still, this displacement is enough to guarantee that the 
latch will not be able to re-engage the pins when the SMA relaxes. After this process, the modules are 
disconnected and can be moved away fi-om each other at any moment. 



2.4 Electrical Design 
The electrical system of the CONRO module must support the control of the sensors and actuators, a 

communication system and a power system. The objectives of the design of the system are to minimize the 
number of discrete components, their overall weight and their power consumption while preserving the self- 
sufficiency and autonomy of the module. 
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Figure 6. Functional block diagram of a module 

A functional diagram of the electric system of the CONRO module is shown in Figure 6. Each module has a 
processor that gives it control over its sensors and actuators. The processor is defined by the use of one of three 
different single-chip micro-controllers: a stamp II based on a PIC16C57 processor or a stamp He or II-SX, both 
based on a SCENIX SX28AC/SS processor. The use of a zero-insertion force socket allows for the manual 
removal of the processor for replacement or programming. The three processors are pin-compatible but differ in 
speed, memory capacity, programming capabilities and power consumption. Thus, the processor of the module 
can be selected to suit a particular task according to its processor speed, memory and power requirements. 

The processor has exclusive access to the actuators of the module. The SMA wire of the active connector is 
activated using a fixed current during a programmable period of time. The servos require a PWM signal 
generated in software because none of these micro-controllers has a dedicated PWM circuit. Hence, the 
processor must generate pulses every 20 ms to refresh the state of the servos. 

The number of digital outputs of the processor was increased using a demultiplexer. Through the 
demultiplexer we can access both the IR receivers and transmitters of the module and establish serial 
communication with other modules. At this moment we can establish a 9600 baud link with/out flow control. 
The processor can route the input signal from the IR receiver to either a low-impedance input pin of the micro- 
controller or to a high-impedance input pin of an 8-bit analog-to-digital converter (ADC), depending on whether 
the infrared receiver is being used for serial communication or as an infrared sensor. This latter state is used 
during the docking of two modules, where a module uses its IR transmitter as a beacon and the other module uses 
its IR receiver as an analog directional sensor. The two modules that are docking can belong to the same robot or 
to two different robots. The combined use of these IR pairs provides the feedback necessary for the modules (or 
the robots) to approach each other and dock. 

The CONRO module uses two lithium batteries: a 6v K28L battery and a 3v K58L cell, each one with a 
capacity of 160mA-h. The batteries set up a 9v high-voltage low-current node to power the micro-controller and 
a 6v low-voltage high-current node to power all other components. The use of the two batteries prevents large 
voltage drops at the micro-controller that would appear when components like the SMA or the servos are used. 
The batteries were selected for their voltage, size, weight, capacity, drain characteristics and the flatness of their 
discharge curves; lithium batteries are a good compromise between these features. Rechargeable batteries, 
although desirable for a robotics project, have an energy density that is very inferior to the lithium chemistry. 



2.5 Considerations on the Module Size 
Specifying the parameters of the module is difficult because of their tight coupling, e.g., battery weight, 

motor torque and weight, module size, operating time, etc., are all parameters that affect each other. A 
relationship between a set of these parameters was developed during the work preliminary to the design of the 
modules. We now apply these relationships to discuss the characteristics of the CONRO module. 

Consider the following parameters: 
V:   battery voltage 
Ch'. battery capacity 
P„,: average power consumed by the module 
t:   maximum operating time of the module 
Ta:   actuator torque 
Wa'. actuator weigh 
W„,: total weigh of the module 
L„,: length of the module 
n:  number of modules that a module can lift 

A simplified model of the module would relate these parameters with the following inequalities: 

C,>^t (1) 
V 

r >w L ii±^ (2) 

Equation 1 states that the battery must have a current delivery capacity C/, greater than or equal to that 
needed to supply the required average power P„, at the rated voltage V for a given period of time t. Equation 2 
states that the torque of the actuator Ta must be greater than or equal to that needed to handle n modules of weight 
W„ and length L,„ or, equivalently, assuming that the actuator is located at the center of the module, the torque 
needed to overcome the inertia of (2n+l)/2 half modules, each with a weight of W„,/2 and length of LJ2. This is 
the maximum torque that the actuator might need to deliver continuously. 

We can use Equations 1 and 2 to estimate upper bounds of the CONRO module on n and t. The average 
power consumed under load by the CPU (i.e., 20 mA at 9 v), other electronics (i.e., 130mA at 6v) and each 
actuator (i.e., 150mA at 6v) are 180 mw-h, 780 mw-h and 900 mw-h, respectively, so the average power 
consumed by the module (using only one actuator) is P„, = 1860 mw-h. The equivalent battery of the module has 
a capacity of C* = 160 mA-h and is rated at a voltage of V = 9v. Given an actuator torque of Ta = 3.7 kg-cm, we 
find from Equation 1 that 
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P. 

n< ^-1 = 1.95 

Thus, our module cannot work more than 45 mins and cannot lift more that one identical module. These 
estimates agree with our experience with the module, e.g., continuous operation of t is about 35 minutes and n is 
about one module. 

2.6 The CONRO Module 
We have built twenty modules that follow the description discussed in this section. Because each module is 

self-contained and autonomous, it is a robot in its own right and thus, it is possible to program it to execute 
motions and to react to stimuli. Figure 1 shows a completely untethered module in a human hand that runs a 



program that rotates its connectors in sequence. Using the PIC-based micro-controller, the program can run for 35 
mins continuously. Due to the high cost of running experiments using non-rechargable batteries, our robots are 
tested using external power supplies. 

Although the modules can be run by themselves, they were designed to work in groups, connected to each 
other forming large robots. The priority of the modules of a robot is to communicate efficiently with their 
adjacent modules. The modules do not share a clock signal and thus, robot actions that require the synchronized 
motions of different modules rely on the quality of the communication. The programming of the communication 
network is complex because, due to the lack of interrupt mechanisms in our micro-controllers, the module has to 
poll the ports in a round-robin fashion. At this moment, the infrared communication between adjacent modules is 
a 9600 baud inverted serial connection with flow control. The length, format and contents of the messages 
depend on the specific type of control used to command the robot. 

The control of a CONRO robot can be performed using a distributed control, a centralized control based on 
a master-slave hierarchy or a hybrid combination of both schemes. In the centralized control, the master is a 
remote host with a large computational capability running C/C-n- code under Linux. In this particular case the 
messages that we are using are three bytes long and contain information about the source and destination of the 
message, a message identification tag and a command token along with its respective argument. There is no 
network description; instead, messages intended for a particular module are broadcasted and hop through the 
network until they reach their destination. 

2.7 CONRO CMOS Digital Camera 
One of the aspects of controlling these robots is providing a user interface to allow an operator to interact 

with the environment. Toward this goal we have developed the CONRO camera that can be mounted on the 
module that would work naturally as the "head" of the robot. As discussed before, the sensors carried by every 
module are those that we consider necessary to assure its self-sufficiency and autonomy, e.g., the IR receivers. 
Still, some sensors that do not need to be carried by every module are necessary. These sensors must be small and 
light and are either piggy-backed on a particular module or the robot carries them as a load. In this section we 
describe our work on producing one such sensor, the CONRO CMOS digital camera that can be carried by a 
module as a piggyback device. The success of this design indicates that many other relevant sensors that would 
fit within the tight constraints of the basic module could be produced with a focused effort, e.g., compasses, 
wireless links, etc. 

Sensors and actuators carried by a CONRO module or robot needs to be as self-contained as possible in 
terms of memory, computational needs and power. Ideally, these sensors (or actuators) should work 
independently from the module and exchange information with the processor only when required. Likewise, if 
possible, they should carry their own batteries, memory and processing circuitry, i.e., they should not drain 
module resources. These goals are not always attainable but nonetheless, they should be taken into account in the 
design of these devices. 

The CONRO camera, shown in Figure 7, was designed to be as self-contained as possible to minimize 
interaction with the resources of the module. It is small (16x16x13 mm^), light (2.7 g), low-power (14.5 mw idle, 
73 mw active) and computationally self-sufficient. Indeed, the camera, based on the VV5300 low-resolution 
digital CMOS image sensor chip produced by VVL, does not require external circuitry: the VVL chip is mounted 
on a board together with a 10 MHz clock, an EEPROM to store the camera startup configuration and the circuitry 
to drive the chip and sense its pixel array. A bi-directional 2-wire serial communications interface allows the 
device to be configured and its operating status monitored. Seven additional cables are used to interface the 
camera and the driving processor. Furthermore, the VVL chip has automatic gain control, which allowed us to 
use a single fixed-aperture lens. With our present set up, the camera provides images with a field of view of 12 
degrees. 

We have built color and monochrome versions of the CONRO camera. They provide an 8-bit video stream 
at 30 fps; we can change this rate using an on-board clock divider. Individual $164\times 124$ raw-format images 
can be easily obtained from the stream. Figure 7 shows the image of a room obtained with the CONRO 
monochrome camera. 

10 



Figure 7. CONRO CMOS camera and a sample picture 

Currently, the CONRO module can carry the camera but it does not have the computational resources to 
capture an image, (e.g., the memory of the module is 2K bytes while the image size is 22K bytes) so instead the 
camera is interfaced directly into the serial port of a PC. ITiis is possible because the camera is computationally 
self-contained, i.e., the on-board oscillator and boot EEPROM provide the means to use the camera as a stand- 
alone imit, i.e., it can be used for the navigation of CONRO robots or work as a standard PC video camera. 

2.8 CONRO Connectors 
Each CONRO module has a set of reconfigurable connectors that can be used to dock with other modules. 

Such connectors should have a compliant mechanism for easy docking and a tightening mechanism for stress 
endurance and precision. Each connector must also have sensors to detect the status of the connector (docked or 
not) and to provide precision guidance in the docking process. Connectors should be able to report their statues to 
the onboard controller and receive commands from the controller. 

The connectors must be hermaphroditic (genderless) so that any two connectors can dock together. To 
insure the correct orientation in self-reconfiguration, the connectors must be designed to allow only one possible 
alignment. Since space has near-zero gravity, a pulling method for docking will be much more predictable than a 
pushing method because any uncontrolled and non-tethered pushing force would cause the docking parties to 
move in an impredictable manner. 
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Figure 8. The CONRO-II Connector (precise and compliant) 

To illustrate the concept of connectors, Figure 5 and Figure 8 illustrate two types of connectors used in the 
CONRO robots in the past three years. The CONRO-I type of connector (in Figure 5) consists of a male side 
(with two pins) and a female side (with a spring-load latch to lock the pins when they are in place). The opening 
of the latch is accomplished by a shape memory alloy line. The advantage of this connector is that it is precise 
and can sustain large stress. The disadvantage is that it has no compliant mechanism and the success of docking 
requires very precise movement, which is hard to obtain when the docking parties are hyper-redundant 
manipulator chains. The CONRO-U type connector (shown in Figure 8) is a major improvement. Inspired by the 
dynamic lubrication process during CONRO docking experiments, we noticed that if pins and latches are 
designed in a special way, then once they are "hooked", the pins can only go one-way deeper into the holes. The 
one-way movement needs no active driving force; the vibrations or other small disturbances in the system will be 
sufficient. The initial hook is high compliant and "loose," but as the pins go deeper and deeper into the hole, the 
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joint becomes tighter and tighter to ensure the required precision and endurance. Figure 8 illustrates one such 
design and implementation. On the left side of the figure, we can see that the latch mechanism behind the hole 
consists of a spring-loaded sloped blade that can rotate and insert into the incoming docking pin/loop. Since the 
blade is sloped, it can easily hook the docking loop and prevent it from moving out. After that, the blade will 
continue to rotate whenever there is a momentary clearance in the loop (such small momentary clearances indeed 
exist during vibrations or dynamic lubrication). Eventually, the blade will complete its whole rotation and the 
docking pin/loop will be fully rested on a flat portion of the blade and the connection will be secured and 
tightened (see the middle picture). To disconnect a connection, the blade will rotate in reverse driven by an 
especially designed brushless electro-magnetic motor which delivers sufficient direct-drive torque while fitting in 
a small volume, and allow the docking pin/loop to extract from the hole. This disconnecting process also relies on 
vibration to capture those momentary clearances when the load bearing is high. This connector has been 
successfully used in the CONRO robots and they make the docking process much more reliable and efficient. 
Note that the initial hooking can be established with a very gentle push on a triggering mechanism so the docking 
process of this connector is not based on pushing but the sliding force of the slopped blade entering the hook. 
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3   Software Control of Self-Reconfigurable Robots 
This section presents a biologically inspired approach to two basic problems in modular self-reconfigurable 

robots: adaptive communication in self-reconfigurable and dynamic networks, and collaboration between the 
physically coupled modules to accomplish global effects such as locomotion and reconfiguration. Inspired by the 
biological concept of hormone, this section describes the Adaptive Communication (AC) protocol that enables 
modules continuously to discover changes in their local topology, and the Adaptive Distributed Control (ADC) 
protocol that allows modules to use hormone-like messages in collaborating their actions to accomplish 
locomotion and self-reconfiguration. These protocols are implemented and evaluated, and experiments in the 
CONRO self-reconfigurable robot and in a Newtonian simulation environment have shown that the protocols are 
robust and scaleable when configurations change dynamically and unexpectedly, and they can support online 
reconfiguration, module-level behavior shifting, and locomotion. The section also discusses the implication of the 
hormone-inspired approach for distributed multiple robots and self-reconfigurable systems in general. 

Self-reconfigurable robots, in one class, are made of autonomous modules that can connect to each other to 
form different configurations. The connections between modules can be changed autonomously by actions of the 
modules themselves. Furthermore, since each module is autonomous (has its own controller, communicator, 
power source, sensors, actuators, and connectors), modules in a self-reconfigurable robot must collaborate and 
synchronize their actions in order to accomplish desired global effects. Because of this dynamism, solutions must 
be provided so that communication and control among modules can be adaptive to topological changes in the 
network. 

This section addresses two basic problems for modular self-reconfigurable robots: how modules in these 
robots communicate with each other when connections between them may be changed dynamically and 
unexpectedly (thus changing their communication routing), and how these physically coupled modules 
collaborate their local actions to accomplish global effects such as locomotion and reconfiguration. The solutions 
to these problems may also be applicable to self-reconfigurable systems in general. Examples of such systems 
include distributed sensor networks and swarm robotic systems. 

Specifically, modules in a self-reconfigurable robot must coordinate their actions to achieve given missions. 
Such coordination must be dynamic, to deal with the changes in network topology; asynchronous, to compensate 
the lack of global clocks; scalable, to support shape-changing and enable global efforts based on weak local 
actuators; and reliable, to recover from local damages in the system and provide fault-tolerance. 

In the context of communication, a self-reconfigurable robot can be viewed as a network of nodes that can 
change and reconfigure their connections dynamically and autonomously. Messages in normal practice are passed 
between connections using named addresses (such as in the Internet) and are routed from the source to the 
destination. Various addressing and routing strategies are possible: Single messages can go from one module to 
the next one; Broadcast messages go to all nodes directly; Multicast messages go to several specific nodes. 
Routing may be best-effort as in the Internet, or source-routed as in some supercomputers [3]. Dynamically 
changing the topology requires continually determining the address and computing the route. This needs 
continual rediscovery of connection topology at the module level. Each module should discover and monitor 
unexpected local topology changes in the network, and adapt to such changes by reorganizing its relationships 
with other modules using their connectors. The concept of connector is widely applicable to many different types 
of networks. For example, in a supercomputing network the connectors are the channels that connect nodes to 
their neighbors [3]. In a wireless network, the connectors of a node are the channels available for communication. 
In self-reconfigurable robots, the connectors are physical so that a link is a physical coupling and a network of 
nodes can form physical structures with different shapes and sizes. For example, the physical connectors in 
CONRO must be joined and disjoined physically to change shape. Such changes in the network topology make a 
CONRO robot a dynamic network. 

The control of the motion or locomotion of reconfigurable robotics, due to the frequent changes in topology, 
presents another special challenge since the action messages may need to be directed to the modules doing a 
specific function rather than to a specific module. Ideally, the modules should coordinate their actions by their 
locations in the current configuration, not by their names or identifiers. For example, the message should be sent 
to the "knee" module in the present configuration, not to module #37 that perhaps was the knee on the old 
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configuration. With this ability, a module should be able to automatically switch its behavior if its role/location is 
changed in the configuration. Furthermore, a control message may also require concerted actions. In other words, 
the message intent may be to execute an action for the robot to "go forward" rather than require the sending of 
several messages to swing the hip, bend the knee, bend the ankle and flex the toes and do this in spite of different 
modules being swapped into and out of the configuration as the system evolves. 

This section presents a biologically inspired approach to address the above challenges and mimic the 
concept of hormones used among biological cells for both communication and control. A biological organism can 
have many hormones acting simultaneously and without interfering with each other, each hormone affecting only 
specific targeted sites. The main idea is that a single "hormone" signal can propagate through the entire network 
of modules, yet cause different modules to react differently based on their local "receptors," sensors, topology 
connections, and state information. Computationally speaking, a hormone signal is similar to a content-based 
message but has the following unique properties: (1) it has no specific destination; (2) it propagates through the 
network; (3) it may have a lifetime; and (4) it may trigger different actions for different receivers. Notice that 
hormone propagation is different from message broadcasting. A single hormone may cause multiple effects on 
the network and different nodes may behave differently when receiving the same hormone. Furthermore, there is 
no guarantee that every node in the network will receive the same copy of the original signal because a hormone 
signal may be modified during its propagation. 

To apply this idea to adaptive communication, we view each module in a dynamic network as an active cell 
that can continuously discover its local topological changes and adjust its communication strategy accordingly. 
We design the Adaptive Communication (AC) protocol for all modules to discover and monitor their local 
topology and ensure the correct propagation of hormone messages in the network. This property holds regardless 
of the changes in the network topology. 

To support distributed control with dynamic network topology, we view locomotion as the effect achieved 
by the interaction on the environment of executing a certain set of actions intrinsically in the robot. For instance, 
an automobile moves forward when the running engine is engaged with the wheels, provided among other things 
that there is enough friction between the tires and the road. In our robot we execute a certain set of intrinsic 
motions and the interaction of these motions with the environment causes locomotion. Motion execution is thus 
execution of module actions in the robot connection topology plus its interaction with the environment. The 
hormone concept described above in the context of topology discovery applies equally well to motion execution. 
We have designed the Adaptive Distributed Control (ADC) protocol for this purpose and applied it to the control 
of CONRO-like self-reconfigurable robots. 

The rest of the section is organized as follows. Section 3.1 discusses the related work. Section 3.2-3.4 
presents a general method for topology discovery and the AC protocol. Section 3.5-3.9 extends the AC protocol 
to the ADC protocol for both distributed control and adaptive communication among self-reconfigurable 
modules. Section 3.10 presents the experimental results of applying the hormone-inspired control protocols to the 
CONRO robot. Finally, Section 3.11 discusses some fundamental questions about the hormone inspired 
approaches and suggests future research directions. 

3.1  Related Work 
The communication and control of self-reconfigurable robots is a challenging problem and the approaches 

for the problem can be either centralized or distributed. From the viewpoint of flexibility and reliability, the 
distributed approaches are generally preferred for the self-reconfigurable robots. Two recent general articles [4, 
5] have provided a good survey of the field. 

Related work for centralized control includes Yim et al. in which configuration-dependent gait control tables 
are used to specify actions for each module for each step. Chirikjian et al. study the metric properties of 
reconfigurable robots and Chirikjian and Burdick propose a mathematical model for controlling hyper-redundant 
robot locomotion. Kotay and Rus propose a control algorithm for controlling molecular robots. Castano et al. use 
a centralized approach for controlling locomotion and discovering network topology. Rus and Vona use the Melt- 
Grow planner for the Crystalline robot. Unsal et al. utilize a centralized planner for bipartite self-reconfigurable 
modules. Most recently, Yoshida et al. and Kamimura et al. demonstrate the online reconfiguration 
(reconfiguration while locomotion) using a centralized method. 

14 



Related work for distributed control includes Fukuda and Kawauchi's control method for CEBOT, the series 
of control algorithms proposed by Murata et al. for self-assembly and self-repairing robots, the hormone-based 
distributed control method proposed by Shen et al., and the role-based control method by Stoy et al. (see 
Appendixes). Most recently, several distributed methods have been proposed for lattice-based robots, including a 
"secenf'-based approach by Bojinov et al., a goal-ordering based approach by Yim et al., a parallel planner by 
Vassilvitskii et al., and an automata-based approach by Butler et al.. 

The distributed control method proposed in this section is different from the previously proposed distributed 
control methods in several aspects. First, a module selects actions based on multiple sources of local information, 
including the local topology, the sensory inputs, the local state variables, and most importantly the received 
hormone messages. Second, the local topology defined in this section distinguishes the connectors of a 
neighboring module and treat different connectors differently. In other words, a module knows not only that its 
connector c„ has a neighbor, but also the name of the connector to which c„ is connected. This provides more 
power for topology representation. Third, the method proposed here can deal with both locomotion and 
reconfiguration using the same unified framework. This has been demonstrated through the ability of distributed 
online reconfiguration on a chain-based real robot. To the best of our knowledge, such a demonstration has not 
been done before. Fourth, the method described here has wider application scope than the Cartesian lattice, and 
can support modules that have internal deforming actions such as pitch, yaw, and roll. 

TTie concept of hormone has previously inspired several researchers to build equivalent computational 
systems. Autonomous Decentralized Systems (ADS) is perhaps the earliest attempt to use hormone-inspired 
methodology to build systems that are robust, flexible, and capable of doing on-line repair. In ADS, the Content 
Code Communication Protocol was developed for autonomous systems to communicate not by "addresses" but 
by the content of messages. The ADS technology has been applied in a number of industrial problems, and has 
the properties of on-line expansion, on-line maintenance, and fault-tolerance. However, ADS systems have yet 
been applied to self-reconfiguration. Another similar approach is proposed in where markers are passed in a 
network to dynamically form sets of nodes for performing parallel operations. Finally, biologically inspired 
control methods have also been used for robot navigation. 

3.2 Adaptive Communication 
As described above, the modules in a self-reconfigurable robot are reconfigured structurally. The physical 

interpretation of this action is that shape morphing occurs. The connectivity interpretation is that the modules 
have a new communication network topology. The control implication is that global actions such as locomotion 
require a re-computation of the local actions to be executed by the individual modules. These local actions 
depend on the position of the module in the reconfigured structure. To the best of our knowledge, such control 
approach can support some unique and new capabilities, such as distributed and online bifurcation, unification, 
and behavior-shifting, which have not been seen before in robotics literature. For example, a moving self- 
reconfigurable robot with many modules may be bifurcated into pieces, yet each individual piece can continue to 
behave as an independent snake. Multiple snakes can be concatenated (for unification) while they are running 
and become a single but longer snake. For behavior-shifting, a tail/spine module in a snake can be disconnected 
and reconnected to the side of the body, and its behavior will automatically change to a leg (the reverse process is 
also true). In fault tolerance, if a multiple legged robot loses some legs, the robot can still walk on the remaining 
legs without changing the control program. All these abilities would not be possible if modules could not cope 
with the topological changes in the communication network. 

In this section, we describe an adaptive communication protocol for dynamic networks such as those used in 
self-reconfigurable robots. Using this protocol, modules can communicate even if the topology of the network is 
changing dynamically and unexpectedly. Communication with this protocol will be shown to be robust, flexible, 
and will allow reconfiguration while the network is in operation. The reconfiguration can either be self-initiated, 
superimposed by external agents, or in response to sensor interaction with the environment. 
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3.3 Self-Reconfigurable Modules and Networks 
r.^xl° '""^^*^ ^^ concept of adaptive communication in a self-reconfigurable network, we will use the 
CONRO robot as an example. A CONRO robot consists of a set of modular modules that can connect/disconnect 
it^T?^ *° ^°'™ different robot configuration. The detail of a single module is shown in Figure 9 Each 
CONRO module is a generalized-cylinder that is 4.0 inch long and 1.0 inch' in diameter. Every module is 
autonomous, self-sufficient, and equipped with a micro-controller, two motors, two batteries, four connectors for 
jommg with other modules, and four pairs of infrared emitter/sensor for communication and docking guidance 

Pitch Action (DOFl) 

Yaw Action (DOF2) 

Figure 9. The schema for a CONRO module and its 4 connectors 

The movements of modules are actuated by two servomotors, which provide the pitch (up and down) 
rotation called DOFl and the yaw (left and right) rotation called D0F2. With these two degrees of freedom a 
smgle module can wiggle its body and has a limited ability to move. However, when two or more modules 
connect to form a structure, they can accomplish many different types of locomotion. For example, a chain of 
modules can mimic a snake or a caterpillar, a body with legs can perform insect or centipede gaits, and a loop can 
move as a rollmg track. Karl Sims [38] has studied this question in details and developed a system for 
discovermg the motion possibilities of different block structures. To some extent, CONRO provides a phvsical 
implementation of his results. 

CT A?if ^°"^°' P'°^^ °" ^ ^^^^ '"°'*"'® '^ ^"^ •" *e BASIC language and is rumiing on the on-board 
STAMP n micro-controller that has only 2K bytes of ROM for programs and 32 bytes of RAM for variables 
Such a tight computational resource poses additional challenges for the control program. We believe that the 
simplicity and efficiency of hormone-inspired approach has contributed greatly to the successful implementation 
01 all functions and programs on board. 

CONRO modules can connect to each other by their docking connectors located at either end of each 
module. At one end, called the module's back, is a female connector, which has two holes for accepting another 
module s dockmg pms, a spring-loaded latch for locking the pins, and an Shape Memory Alloy (SMAVtriggered 
mechamsm for releasing the pins. At the other end of a module, three male connectors are located on three sides 
of the module, called front, left, and right. Each male connector consists of two pins. When a male connector and 
a female connector are joined together, we call the connection an active link. The connected modules are called 
neighbors. 

CONRO modules communicate with each other through active links. Each connector has an infrared 
fa-ansmitter and an mfi-ared receiver, and they are arranged in such a way that when two connectors are joined to 
form an active link, the transmitter and the receiver of one side are aligned with the receiver and the transmitter 
on the other side, forming a bi-directional local communication link. In CONRO modules, such communication 
mechamsm is established by a handshake between the sender and the receiver. When the sender wants to send a 
message, it turns on its mfi-ared transmitter and waits for the receiver to respond. When the receiver detects the 
signal. It will turn on its transmitter and inform the sender and both parties will immediately enter the serial 
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communication protocol (RS232 with 9600 baud rate) and the message will be sent and received. If there is no 
receiver at the other end, then the sender will not get any response and the procedure will return a timeout failure. 

3   D 3   D 

dG 
D a 
3   D 

DO no 

*        ' G 
GO 

\..y 
3   D 3   D 

\ ^^ 
3   D 

IR Receiver:   M   IR Transmitter;  Q   Yawinotor:i ci *i 

(Pilch motors not shown) 

Figure 10. A top-down view of a self-reconfigurable communication network among 9 modules 

Figure 10 shows a network of 9 modules (9x4 connectors) forming a hexapod. There are 8 active links 
(which use 16 connectors) and the rest of 20 connectors are still open. Each active link uses two pairs of aligned 
infrared transmitters and receivers for communication. As we can see from this example, a CONRO robot can be 
viewed as a communication network of connected modules as well as a physically connected set of modules. 

Based on the above description, we define a self-reconfigurabie communication network as a connected, 
undirected graph that has the following properties: 

1. Each node is a self-reconfigurable module; 
2. Each node has finite, named connectors. Two connectors of two modules can join and form an active link 

but one connector can only be in at most one active link. 
3. Each edge is an active link; 
4. The topology of the network may change dynamically, and active links may appear or disappear 

dynamically; 
5. Nodes can only communicate through active links; 
6. Nodes do not know the network size nor have unique IDs. 

3.4 The Representation of Local Topology 
We represent the local topology of a CONRO module in a self-reconfigurable network based on how its 

connectors are connected to the connectors of its neighbor modules. Shown in Figure 11, a module is type TO if it 
does not connect to any other modules. A module is type Tl if its back connector, b, is connected to the front,/, 
of another module. A module is type T2 if its front connector is connected to the back of another module. A 
module is type T16 if its back is connected to the front of a neighbor and its front is connected to the back of 
another neighbor. A module is type T21 if its back is connected to the front of another module, and its left, /, and 
right, r, are connected to the backs of other two modules respectively. Note that every active link is a pair of the 
connector b (the only female connector in a CONRO module) and one of the three male connectors, f, I, and r. 
There are 32 types of local topology as listed in Table 1 and these types are ordered by the number of active links 
they have. For example, type TO has no active links; types Tl through T6 have one active link, types T7 through 
T18 have two active links, types T19 through T28 have three active links, and types T29 through T3I have four 
active links. 
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Figure 11. Examples of module topological type (T0,T1,T2,T5,T6,T16,T21,T29) (f, 1, r, b are connectors) 

Table 1. The Local Topology Types of CONRO Modules 
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b b T7 I b b T23 
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I b Til r b b T27 
I b T12 r b b T28 
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3.5 The Adaptive Communication Protocol 
Using the concept of hormone messages and local topological types defined above, we can define the 

Adaptive Communication (AC) protocol for continual rediscovery of network topology and ensure adaptive 
communication. Fig. 11 shows the pseudo-code program for the AC protocol. The main procedure is a loop of 
receiving and sending (propagating) "probe" hormones between neighbors, and selecting and executing local 
actions based on these messages. A probe is a special type of hormone that is used for continuously discovering 
and monitoring local topology. Other types of hormones that can trigger more actions will be introduced later. All 
modules in the network run the same program, and every module detects changes in its local topology (i.e., the 
changes in the active links) by sending probe messages to its connectors to discover if the connectors are active 
or not. The results of this discovery are maintained in the vector variable LINK[C], where C is the number of 
connectors for each module (e.g., C=4 for a CONRO module). If there is no active link on a connector c (or an 
existing active link on c is disconnected), then sending of a probe to c will fail and LINK[c] will be set to nil. If a 
new active link is just created through a connector c, then sending a probe to c will be successful and LINK[c] 
will be updated. After one exchange of probes between two neighbors, both sides will know which connector is 
involved in the new active link and their LINK variables will be set correctly'. 

For example, if an active link is created between the connector x of module A and the connector y of module B, then 
LINKW=y for module A, and LINK[y]=j: for module B. The LINK[C] variable represents the local topology type of a 
CONRO module. For example, a module is type TO if LINK[f,l,r,b] = [nil,nil,nil,nil]; type T2 if LINKff,l,r,bl = [b,nil,nil,nill; 
and type T21 if LINK[f,l,r,b] = [nil,b,b,f|. 



The AC protocol has a number of important properties that are essential for adaptive communication in self- 
reconfigurable networks. 

Proposition 1: Using the AC protocol, all modules can adapt to the dynamic topological changes in the self- 
reconfigurable network and discover their local topology in a time less than two cycles of the main loop. The 
updated local topology information is stored in LINK[c]. 

To see this proposition is true, notice that initially all LINK variables have a nil value. If a module has a 
neighbor on its connector c, then LINK[c] will be set properly when this module receives a probe on that 
connector. Since every module probes all its connectors in every cycle of the program, the LINK[c] will be 
updated correctly with at most two cycles. 

Proposition 2: If the network is acyclic graph, then the AC protocol guarantees that every non-probe 
message will be propagated to every module in the network once and only once. The time for propagating a 
hormone to the entire network is linear to the radius of the network graph. 

OUT: the queue of messages to be sent out; IN: the queue of messages received in the background; 
C: the number of connectors for each module; MaxClock: the max value for the local timer; 
LINK[1 C]: the status variables for the connectors (i.e., the local topology), and their initially values are nil; 
A hormone is a message of [type, data, sc, re], where sc is the sending connector through which the message is sent, and re is the 
receiving connector through which the message is received. 

MainO 
LocalTlmer = 0; 
Loop forever: 

For each connector c=1 to C, insert [probe,_,c,_] in OUT; 
For each received honnone [type, data, sc, re] in IN, do: 

{ LINK[rc] = sc; 
If {type * probe) then 

SelectAndExecuteLocalActions(fy'pe, data); 
PropagateHormone(fype, data, se, re);} 

SendO; 
LocalTimer = mod(LocalTimer+1, MaxClock); 

End Loop. 

SelectAndExecuteLocalActions(fype, ofafa) 
{// For now, assume that when LocalTimer=0, a module will 
// generate a test hormone to propagate to the network 
// Other possible local actions will be introduced later. 
If LocalTimer==0, then for c=1 to C, do: 

Insert [Test, 0, c, nil] into OUT; 
) 

PropagateHormone(fype, data, sc, re) 
[ For each connector c=1 to C, do: 

If LINK[c]?'0 and c^rc, then 
{Delete [probe, *, c, *] from OUT; 

Insert [type, data, e, nil] into OUT; // propagation 
} 

] 

SendO 
{ For each connector c=1 to C, do: 

get the first message [type,',e.'] from OUT, 
Send the message through the connector c; 
If send fails (i.e., time out), LINK[c] = 0. 

)  

Figure 12. The Adaptive Communication (AC) Protocol 

To see that proposition 2 is true, notice that when a new message is generated (e.g., [Test,*,*,*] in Fig. 5), it 
will be sent to all active links from that module. When a module receives a hormone, it will send it to all active 
links except the link from which the hormone is received. Since the network is acyclic, the generator module can 
be viewed as the root of a propagation tree, where each module will receive the hormone from its parent, and will 
send the hormone to all its children. The propagation will terminate at the leaf nodes (modules) where there is no 
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active links to propagate. Since the tree includes every module, the hormone reaches every node. Since every 
module in the tree has only one parent, the hormone will be received only once by any module. 

For networks that contain loops (cyclic graphs), the AC protocol must be extended to prevent a hormone 
from propagating to the same module again and again. To ensure that each hormone is received once and only 
once by every module, additional local information (such as local variables) must be used to "break" the loop of 
communication. We will illustrate the idea in the ADC protocol when we describe the control of rolling tracks 
which is a cyclic network. ' 

3.6 Hormone-inspired Distributed Control 
As described above we want a distributed control protocol that is identity free but supports a module to 

select Its actions based on its location in the network. Since hormones can trigger different actions at different 
site and every module continuously discoveries its local topology, such a control method can be defined based on 
the hormone messages. 

To illustrate the idea, let us first consider an example of how hormones are used to control the locomotion of 
a metamorphic self-reconfigurable robot. Figure 13 illustrates a 6-module CONRO self-reconfigurable robot and 
Its caterpillar gait. The types of modules, from the left to the right, in this robot are: Tl (the head), T16, T16, 
T16, T16, and T2 (the tail). To move forward, each module's pitch motor (DOFl) goes through a series of 
positions and the synchronized global effect of these local motions is a forward movement of the whole 
caterpillar (mdicated by the arrow). In general, the wavelength of the gait can be flexible (e.g., a single module 
can craw as a cateipillar). The example in Fig. 6 shows a wavelength of four, but other wavelengths can be 
defined similarly. 

StepO         b  f 

-45 -45^"''' f \jr -45 
b f 

+45 +45 +45 

Figure 13. A caterpillar movement ('b' and T are connectors, and +45 and -45 are DOFl). 

To completely specify this gait, one can use a conventional gait control table [6] shown in Table 2 wliere 
each row in the table corresponds to the target DOFl positions for all modules in the configuration during a step. 
Each column corresponds to the sequence of desired positions for one DOFl. The control starts out at the first 
step m the table, and then switches to the next step when all DOFl have reached their target position in the 
current step. When.the last step in the table is done, the control starts over again at step 0. As we can see in Table 
2, the six columns correspond to the six module's DOFl in Fig. 12 (the leftmost is Ml, and the rightmost is M6) 
The first row in this table corresponds to Step 0 in Fig. 12. 

Table 2. The Control Table for the Caterpillar Move 
Step Module ID for DOFl actions 

Ml M2 M3 M4 
+45° 

M5 
+45° 

M6 
0 +45° -45° -45° -45° 
1 -45° -45° +45° +45° -45° -45° 
2 -45° +45° +45° -45° -45° +45° 
3 +45° +45° -45° -45° +45° +45° 

The problem of this conventional gait table method is that it is not designed to deal with the dynamic nature 
of robot configuration. Every time the configuration is changed, no matter how slight the modification is, the 
control table must be rewritten. For example, if two snakes join together to become one, a new control table must 
be designed from scratch. A simple concatenation of the existing tables may not be appropriate because their 
steps may mismatch. Furthermore, when robots are moving on rough ground, actions on each DOF cannot be 
determined at the outset. 
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To represent a locomotion gait using the hormone idea, we notice that Table 2 has a "shifting" pattern 
among the actions performed by the modules. The action performed by a module m at step t is the action to be 
performed by the module (m-1) at step (f+1). Thus, instead of maintaining the entire control table, this gait is 
represented and distributed at each module as a sequence of motor actions (+45°, -45°, -45°, +45°). If a module is 
performing this caterpillar gait, it must select and execute one of these actions in a way that is synchronized and 
consistent with its neighbor module. To coordinate the actions among modules, a hormone can be used to 
propagate through the snake and allow each module to inform its immediate neighbor what action it has selected 
so the neighbor can select the appropriate action and continue the hormone propagation. This example also 
illustrates that hormones are different from broadcasting messages because their contents are changing during the 
propagation. 

3.7 The Adaptive and Distributed Control Protocol 
To implement the hormone-inspired distributed control on the AC protocol, each module must react to the 

received hormones with appropriate local actions. These actions include the commands to local sensors and 
actuators, updates of local state variables, as well as modification of existing hormones or generation of new 
hormones. Modules determine their actions based on the received hormone messages, their local knowledge and 
information, such as neighborhood topology (module types) or the states of local sensors and actuators. 

// Built on the AC protocol by adding a RULEBASE and extending the following procedure. 

SelectAndExecuteLocalActions(/ype, data) 
{II Select appropriate actions based on 
//type, data, LINK, LocalTlmer, and RULEBASE; 
Actions«-SelectActions{type,data,LINK,LocalTinfier,RULEBASE); 
For each action a in Actions, do ExecuteAction(a); 

} 

RULEBASE: 
{// The rules here are similar to the receptors in biological cells and are task-specific "if-then" rules as those in Table 3; 
// Although each desired task has a different set of rules, the rules can be combined together if they are not conflicting. 

} 

Figure 14. The Adaptive and Distributed Control (ADC) Protocol 

Table 3. The RuleBase for the Caterpillar Move 

Module Type Local Timer Received Hormone Data Perform Action Send Hormone 

Tl 0 D0F1=445 [CP, A. b] 

Tl (l/4)*MaxClock DOFl=-4.'5 [CP, B, b] 
Tl (l/2)*MaxClock DOFl=-4.'5 [CP, C. b] 
Tl (3/4)*MaxClock DOFl=+45 [CP, D, b] 

T16,T2 A DOFl=-45 [CP. B, b] 

T16,T2 B DOFl=-45 [CP, C, b] 
TI6,T2 C DOFl=+45 [CP, D, b] 
T16.T2 D DOFl=-i45 [CP, A, b] 

For these purpose, we specify the Adaptive and Distributed Control (ADC) protocol listed in Fig. 13. The 
ADC protocol is the same as the AC protocol except that there is a RULEBASE and the procedure 
SelectAndExecuteLocalActionsO is extended to select and execute actions based on the rules in the RULEBASE. 
The selection process is based on (1) local topology information (such as LINK[] and the module type), (2) the 
local state information (such as local timer, motor and sensor states), and (3) the received hormone messages. 
Biologically speaking, the rules in RULEBASE are analogous to the receptors in biological cells, which 
determine when and how to react incoming hormones. A module can generate new hormones when triggered by 
the external stimuli (e.g., the environmental features such as color or sound) or by a received hormone message. 
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When there are multiple active hormones in the system, the modules will negotiate and settle on one hormone 
activity. 

To illustrate the idea of action selection based on rules, let us consider how the caterpillar movement is 
implemented. The required rules for this global behavior are listed in Table 3. In this table, the type of the 
hormone message is called CP, and the data field contains the code for DOFi. The other fields of hormones are 
as usual, but we only show the field of sender connector (sc) for simplicity. 

All modules in the robot have the same set of rules, but they react to hormones differently because each 
module has different local topology and state information. For example, the first four rules will trigger the head 
module (type Tl) to generate and send (through the back connector b) four new hormones in every cycle of 
MaxClock, but will have no effects on other modules. The last four rules will not affect the head module, but will 
cause all the body modules (T16) to propagate hormones and select actions. These modules will receive 
hormones through the front connector/and propagate hormones through the back connector b. When a hormone 
reaches the tail module (T2), the propagation will stop because the tail module's back connector is not active. 
The speed of the caterpillar movement is determined by the value of MaxClock. The smaller the value is, the 
more frequent new hormones will be generated, thus faster the caterpillar moves. 

Compared to the gait control table, the ADC protocol has a number of advantages. First, it supports online 
reconfiguration and is robust to a class of shape alterations. For example, when a snake is cut into two segments, 
the two disconnected modules will quickly change their types from T16 to T2, and from T16 to Tl, respectively 
(due to the AC protocol). The new Tl module will serve as the head of the second segment, and the new T2 
module will become the tail of the first segment. Both segments will continue move as caterpillar. Similarly, 
when two or more snakes are concatenated together, all the modules that are connected will become T16, and the 
new snake will have one head and one tail, and the caterpillar move will continue with the long snake. Other 
advantages of this hormone-inspired distributed control protocol include the scalability (the control will function 
regardless of how many modules are in the snake configuration) and the efficiency (the coordination between 
modules requires only one hormone to propagate from the head to the tail). Let n be the number of modules in the 
snake, then the ADC protocol requires only 0(n) message hops for each caterpillar step, while a centralized 
approach would require O(M^) message hops because n messages must be sent to n modules. 

In general, the ADC protocol has the following properties: 
• Distributed and Fault-Tolerant. There are no permanent "brain" modules in the system and any module can dynamically 

become a leader when the local topology is appropriate. Damage to single modules will not paralyze the entire system. 
• Collaborative Behaviors. Modules do not require unique IDs yet can determine their behaviors based on their topology 

types and other local information. The global behaviors can be locomotion or self-reconfiguration. 
• Asynchronous Coordination. No centralized global real time clocks are needed for module coordination, and actions can 

be synchronized via hormone propagation. 
• Scalability. The control mechanism is robust to changes in configuration as modules can be added, deleted, or rearranged 

in the network. 

3.8 Other Locomotion Examples of the ADC Protocol 
The ADC protocol can be applied to many different robot configurations. All that is required is to provide 

the appropriate set of rules to the protocol and have the correct initial configuration in place. For example. Table 
4 lists the set of rules that will enable a legged robot to walk. In this class of configuration, the module types are 
similar to those shown in Fig. 3 and Fig. 4, where a six-legged robot is shown. In other words, the left leg 
modules are T6, the right leg modules are T5, the head is T2I, the tail TI9, and the spine modules are T29. The 
hormone message used in Table 4 is named as LG. We use set notation such as {l,b,r} as a shorthand for the set 
of connectors to send the hormone. The action Straight means DOF1=DOF2=0. The action Swing means to lift a 
leg module, swing the module forward, and then put the module down on the ground. The action Holding means 
to hold a leg module on the ground while rotating the hip to compensate the swing actions of other legs. 

The first two rules indicate that the head module, which can be type T21, T17, or TI8, is to generate two 
new LG hormones with alternative data (A and B) for every cycle of MaxClock. This hormone propagates 
through the body modules (T29, T26, or T28) and the tail module (TI9), alternates its data field, and reaches the 
leg modules, which will determine their actions based on their types (T5 or T6). 
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Table 4. The RuIeBase for a Legged Walk 

Module Type Local Timer Received Hormone Data Perform Action Send Hormone 
T21,T17,T18 0 Straight [LG,A,{Ub}l 
T21,T17,T18 0.5*MaxClock Straight [LG,B,{l,r,b}l 

T29, T19, T26, T28 A Straight rLG,B,{Ub}l 
T29, T19, T26, T28 B Straight rLG,A,{l4-,b>l 

T5 A Swing 
T6 B Holding 

This control mechanism is robust to changes in configurations. For example, one can dynamically add or 
delete legs from this robot, and the control will be intact. The speed of this gait can be controlled by the value of 
MaxClock, vAdch determines the frequency of hormone generation from the head module. 

^O 
Moving 
direction 

Figure 15. A rolling track configuration and movement. 

As another example of how to use the ADC protocol to control locomotion of self-reconfigurable robots, 
Figure 15 shows the configuration of the rolling track. Notice that in this configuration, all modules are of type 
T16, only their DOFl values are different. The track moves one direction by shifting the two DOFl values (90, 
90) to the opposite direction. 

Table 5. The RuIeBase for a Rolling Track Movement 

Module Type Local Variables Received CP Data Perform Action Send Hormone 
T16 Head=l, Timer=MaxClock DOF1=90, Timer=0, Head=0 [RL,(90,90,l),bl 
T16 DOF1=0 (90,90,1) DOF1=90, Timer=0, Head=l fRL,(90,0,0),bl* 
T16 DOF1=0 (90,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,0,0),bl 
T16 DOF1=0 (90,0,0) DOF1=0, Timei=0, Head=0 [RL,(0,0,0),bl 
T16 DOF1=0 (0,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,0,0),bl 
T16 DOF1=90 (0,0,0) D0F1=0, Timer=0, Head=0 [RL,(0,90,0),bl 
T16 Head=0, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,0),bl 
T16 Head=l, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,l),b] 

Note: * means send the hormone after all local actions are completed.                                         | 

Table 5 lists the rules for a rolling track robot. The hormone used here is of type RL, and its data field 
contains two values of DOFl, and a binary value for selecting the head module. One hormone message 
continuously propagates in the loop (just as a token traveling in a token ring) and triggers the modules to bend 
(DOFl =90) or sfraighten (DOF1=0) in sequence. We assume that there is one and only one module whose local 
variable Head=l. This module is responsible for generating a new hormone when there is no hormone in the 
loop. This is implemented by the first rule, which will detect a time-out for not receiving any hormone for a long 
time (i.e., looping through the program for MaxClock times). The head module is not fixed but moving in the 
loop. We assume that the initial bending pattern of the loop is correct (i.e., as shown in Fig. 8) and the head 
module is initially located at the up-right comer of the loop. The rules in Table 5 will shift the bending pattern 
and the head position in the loop and cause the loop to roll into the opposite direction of hormone propagation. 
Since hormone propagation is much faster than the actual execution of actions, when a module is becoming the 
head, it is also responsible for making sure all actions in the loop are completed before the next round starts. The 
head module will hold the next hormone propagation imtil all its local actions (DOFl moving from 0 to 90) are 
completed. 
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Notice that the loop configuration is a cyclic network and module types alone are no longer sufficient to 
determine local actions (in fact all modules in the loop have the same type T16). In general, additional local 
variables (such as Head) are necessary to ensure the global collaborations between modules in a cyclic network. 

Due to the potential of communication errors, there may be situations where no module has the local 
variable Head= I and there is a need for a new head module. In such a case, it may be possible to create a 
negotiation mechanism for one module to switch its local variable to Head=l, if there are none in the group --just 
like some schools of fish where a female changes gender if the male in the group is dead. One possible 
implementation is to allow any module to self-promote to become a new head if it has not received messages for 
a long time. In this case, modules must negotiate among to ensure that there is one and only one head in the 
system. This is sometimes called the problem of Distributed Task Selection and we will describe a solution later. 

3.9 Distributed Control of Cascade of Actions 
Hormone-inspired distributed control can also be applied to the control of cascade of actions, where actions 

are organized in a hierarchical structure and a single action in a higher-level can trigger a sequence of lower-level 
actions. To illustrate the ideas, let us consider the example in Figure 16, where a CONRO robot is reconfiguring 
from a quadruped to a snake. The robot first connects its tail with one of the feet, and then disconnects the 
connected leg from the body so that the leg is "assimilated" into the tail. After this "leg-tail assimilation" action 
is performed four times, the result is a snake configuration. Note that the middle shape in Figure 16 is an 
illustration. In the real CONRO robot, at least 4 modules are needed to make a loop. 
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Figure 16. Reconfiguring a 4-legged robot into a snake body. 

To control this reconfiguration, the high-level actions are a sequence of leg-tail assimilations, while the 
lower-level actions are those that enable the tail to find a foot, to align and dock with the foot, and then 
disconnect the leg from the body. Using hormones, the control of the reconfiguration can be accomplished as 
follows. One module in the robot first generates a hormone (called LTS for changing Legs To Snake). This LTS 
hormone is propagated to all modules, but only the foot modules (which are types T5 or T6) will react. Each foot 
module will start generating a new hormone RCT to Request to Connect to the Jail. Since there are four legs at 
this point, four RCT hormones are propagating in the system. Each RCT carries the information about its 
propagation path . A RCT hormone will trigger the tail module (type T2) to do two things: inhibit its receptor for 
accepting any other RCT hormones, and acknowledge the sender (using the path information in the received 
RCT) with a TAR (Tail Accept Request) hormone. Upon receiving the TAR hormone, the selected foot module 
first terminates its generation of RCT, and then generates a new hormone ALT (Assimilate Leg into Tail) to 
inform all the modules in the path to perform the lower-actions of bending, aligning, and docking the tail to the 
foot. The details of these lower-level actions are described elsewhere [26]. When these actions are terminated, 
the new tail module will activate its receptor for accepting other RCT hormones, and another leg assimilation 
process will be performed. This procedure will be repeated until all legs are assimilated, regardless of how many 

A propagation path is a concatenation of all the sender connectors and receiver connectors through which the hormone 
has been sent so any module along the path can trace back to the original sender. 
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legs are to be assimilated. In Table 6, we list one possible sequence of hormone activities for assimilating four 
legs shown in Figure 16. 

Table 6. The Hormone Activities for Cascade Actions. 

Hormones Actions 
LTS Start the reconfiguration 
RCT,, RCTj, RCT,, RCT4 Legs are activated to generate RCTs 
TAR, RCT2, RCT,, RCT4 The tail accepts a RCT, and legl stops RCT, 
ALT, RCT2, RCT,, RCT4 The tail and legl perform the assimilation process 
TAR, RCT2, RCT4 The new tail accepts a RCT, and leg3 stops RCT, 
ALT, RCT2, RCT4 The tail and leg3 perform the assimilation process 

TAR, RCT2 The new tail accepts a RCT, and leg4 stops RCT4 
ALT, RCT2 The tail and leg4 perform the assimilation process 
TAR The new tail accepts a RCT, and leg2 stops RCT2 
ALT The tail and leg2 perform the assimilation process 

0 No more RCT, and end the reconfiguration 

3.10 Experimental Results 
The hormone-inspired adaptive communication and distributed control algorithms described above have 

been implemented and tested in two sets of experiments. The first is to apply the algorithm to the real CONRO 
modules for locomotion and reconfiguration. The second is to apply the algorithm to a CONRO-like robot in a 
Newtonian mechanics simulation environment called Working Model 3D [39]. 

All modules are loaded with the same program that implements the ADC protocol illustrated in Figure 12 
and Figure 14. For different configurations, we have loaded the different RULEBASE. All modules are running 
as autonomous systems without any off-line computational resources. For economic reasons, the power of the 
modules is supplied independently through cables from an off-board power supplier. 

For the snake configuration, we have loaded the rules in Table 3 onto the modules and experimented with 
caterpillar movement with different lengths ranging from 1 module to 10 modules. With no modification of 
programs, all these configurations can move and snakes with more than 3 modules can move properly as 
caterpillar. The average speed of the caterpillar movements is approximately 30cm/minute. To test the ability of 
on-line reconfiguration, we have dynamically "cut" a 10-module running snake into three segments with lengths 
of 4, 4, and 2, respectively. All these segments adapt to the new configuration and continue to move as 
independent caterpillars. We also dynamically connected two or three independent running caterpillars with 
various lengths into a single and longer caterpillar. The new and longer caterpillar would adapt to the new 
configuration and continue to move in the caterpillar gait. These experiments show that the ADC protocol is 
robust to changes in the length of the snake configuration. 

To test whether modules can automatically generate hormones when they receive appropriate environmental 
stimuli from their local external sensors, we have installed two tilt-sensors on one of the modules in the snake 
configuration, and loaded the following rules to the modules: 

If tilt-sensors=[0,l], generate hormone [FlipLeft,*,*] 
If tilt-sensors=[l,0], generate hormone [FlipRight,*,*] 
If tilt-sensors=[ 1,1], generate hormone [FlipOver,*,*] 
We defined the actions for FlipLeft, FlipRight, and FlipOver for all the modules so that when these hormone 

messages are received, the modules will perform the correct actions for DOFl and D0F2 to flip the snake back to 
its normal orientation. To test this new behavior, we manually pushed the snake, while it is moving as a 
caterpillar, to its side or flipped it upside down. We observed that the tilt-sensors are activated, new hormones are 
generated, a sequence of actions is triggered, and the robot flips back to its correct orientation. (See movies at 
http://www.isi.edu/CONRO.) 

For the legged configuration, we have loaded the rules in Table 4 onto the modules and experimented with 
the various configurations derived from a 6-leg robot. These configurations can walk on different number of legs 
without changing the program and the rules. While a 6-leg robot is walking, we dynamically removed one leg 
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from the robot and the robot can continue walk on the remaining legs. The removed leg can be any of the 6 legs. 
We then dynamically removed a pair of legs (the front, the middle, and the rear) from the robot, and observed 
that the robot can continue walk on the remaining 4 legs. We then systematically experimented removing 2, 3, 4, 
5, and 6 legs from the robot, and observed that the robot would still walk if the remaining legs can support the 
body. In other cases, the robot would still attempt to walk on the remaining legs even if it has only one leg. 
Although we have only experimented robots with up to 6 legs, we believe in general these results can scale up to 
large configurations such as centipedes that have many legs. 

For the rolling track configuration, we have loaded the rules in Table 5 onto the modules and experimented 
with rolling tracks with lengths of 8, 10, and 12. In all these configurations, the rolling track moved successfully 
with speed approximately 60cm/minute. The current configurations must have more than 6 modules and the 
number of modules must be even. This is because there must be 4 modules with DOF1=90, and at least two other 
modules with DOE 1=0. To test the robustness of the system against loss of messages in the communication, we 
simulated random message losses in the program. We observed that when a message of [RL, (*,*,0), b] is lost, the 
robot will stop rolling momentarily and then the head module's local timer will reach MaxClock, and a new 
hormone will be generated and the track will resume rolling. If the lost message is [RL, (*,*,1), b], then there will 
be no head module in the system, and the robot will not roll again. However, since most messages are of the first 
kind, the chance of failing to resume rolling is low. In practice, when message losses do occur, we only observed 
non-recovery stops in rare occasions. 

In parallel with the experiments on the real CONRO robot, we have also implemented with the ADC 
protocol on a simulated CONRO-like robot in a software Newtonian simulation environment called Working 
Model 3D [39]. Using this three-dimensional dynamics simulation program, we have designed a set of virtual 
CONRO modules to approximate the physical properties of the real modules, including their mass, motor torques, 
joints, coefficient of friction, moments of inertia, velocities, springs, and dampers. The ADC protocol is 
implemented in Java and runs on each simulated module. We have experimented with and demonstrated 
successful locomotion in various configurations, including snakes with different length (3-12 modules) and 
insects with different numbers (4-6) of legs. For the cascade actions, we have successfully simulated the 
reconfiguration sequence described in Section 3.9 using the ADC protocol. 

3.11 Discussion 
This section discusses some related questions about the ADC protocol: (I) How to deal with multiple 

hormone generators in a robot? (2) How to combine multiple rule sets and switch between them? (3) How to 
develop the appropriate RULEBASE for a particular global behavior? (4) Is this mechanism applicable to robotic 
systems in general? 

In the above description, all the rules are so designed that one robot has only one hormone generator at a 
time. For the snake and legged robots, the generator is the head module. For the rolling track, it is the module that 
has a local variable head=l. When there are multiple hormone generators in a robot, modules must negotiate to 
select one and only hormone activity. This problem is sometimes called Distributed Task Selection, which is a 
process for modules to agree and select the same task among multiple initiated tasks in a distributed manner. To 
solve this problem, we have designed a distributed algorithm called DISTINCT. The main idea is to allow every 
activated hormone generator to compete to build a spanning tree for itself (being the root of that tree) by 
propagating a tree-building message to all its neighbors. During this tree building process, if a hormone generator 
module finds itself being asked to be a part of another tree (when it receives a tree building message from a 
neighbor module), it will drop its own root status and propagate that message to its neighbors (less the one from 
which the message is received) and become a part of that tree. If any module that is already in a tree receives 
another tree building message from a non-parent neighbor module, this module will select one of these received 
tasks, and designate itself as a new root and start building a new tree by propagating a new tree-building message 
to all its neighbors. This method is proved to be correct in selecting one and only one hormone activity in a 
distributed network. 

The second question is how to combine multiple rule sets. We notice that as long as rules in both sets do not 
share the same conditions, then the two different rule sets can be combined into one and the switch between the 
two behaviors will be automatic. For example. Table 3 can be combined with Table 4 and the result rule set can 
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be used for demonstrating "online behavior-shifting" between caterpillar movement and leg movement. In 
particular, one can disconnect a tail/spine module from a snake and connect it to the side of the snake, and that 
module will automatically change its behavior to a leg. A similar but reverse process will change a leg module to 
a tail/spine module. Using this technique, we can dynamically change a snake configuration to a legged robot by 
rearranging modules in the body, while the robot is still running. The movies illustrated in Figure 2 provides one 
of such examples. 

The third question is how to develop an appropriate rule set for a particular behavior. We note that the local 
control rules are similar to the receptors found in biological cells and they determine how modules react to 
hormones. At the current stage, the development of these rules requires expertise in the expected behavior and 
the local topological type information about the modules in the configuration. It is still an open problem how to 
develop these rules automatically. Approaches based genetic algorithms and other machine learning methods can 
be promising, but further research is needed to generate hormone receptors automatically and correctly. In 
general, the more complex the behavior is, the more complex the set of rules and requirements are. To make the 
approach feasible for obtaining for complex behaviors, a general strategy can be suggested based on Simon's 
hierarchical and nearly-decomposable systems. One first decomposes a complex behavior into a hierarchy of sub- 
behaviors and design one hormone for each of the most primitive behaviors. Then, another set of hormones is 
designed to compose the simple behaviors together. The hormones in Table 6 are designed using this strategy. 
As a direction for future research, we will develop software methods to mechanize these hormone design 
procedures. 

The fourth question is whether the hormone-inspired approach described here is applicable for robotics 
systems in general. Although it has been the nature of self-reconfigurable robots that forced us to develop this 
distributed control mechanism, we believe it would be easily generalized and applied to behavior design of robots 
for which algorithmic, centralized approaches are usually applied (e.g. wheeled mobile robots). In particular, one 
can generalize the concept of "connectors between modules" to "communication channels between robots", and 
then the AC and the ADC protocols can be applied to controlling the collaborations among distributed robotics 
systems in a dynamic network. Each robot would have a number of "channels" that can be "connected" to other 
robots' channels to form "active links" which are not necessarily physical couplings but communication links. 
With this generalization, all the advantages described in this section could be beneficial to the control of 
distributed robotics systems. One potential concern for the scalability of the hormone-inspired protocols is that if 
there are delays in the communication, the system in general may behave erratically. It has been proven that in 
multi-agent/multi-robot systems, effects of delay may create unforeseen/emerging behavior. As a possible 
solution for this problem, we propose to use hormones to adjust local timers to compensate the delay. For 
example, one can image that when a hormone message is received, the module will readjust its local timer as a 
function of the hormone's lifetime (the number of hops it has been propagated). However, further experiments 
must be conducted to verify the effectiveness of this approach. 
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4   Autonomous Docking for Self-Reconfiguration 
Docking is a crucial action for self-reconfigurable robots because it supports almost all practical advantages 

of such robots. In addition to the classic docking challenges found in other applications, such as reliable 
dock/latch mechanics, effective guiding systems, and intelligent control protocols, docking in self-reconfigurable 
robots is also subject to some unique constraints. These constraints include the kinematics constraints imposed on 
the docking modules by other modules in the configuration, communication limitations between the docking and 
relevant modules, and the demand for distributed control software because of the dynamics of configuration. To 
solve these challenging problems, this section reports a set of solutions developed in the CONRO reconfigurable 
robot project. The section presents a three-stage docking process, six different alignment protocols, distributed 
inverse kinematics, and other techniques such as dynamic lubrication that are essential for successful docking in 
CONRO-like robots. These solutions enable CONRO robots to perform autonomous and distributed 
reconfigurations in a laboratory environment, and they also suggest important considerations for docking in self- 
reconfiguration in general. 

Self-reconfigurable robots are robots that can change their individual and collective shape and size in order 
to meet operational demands in uncertain and dynamic environments. Such robots typically consist of a 
collection of autonomous modules that can connect and disconnect among themselves. Since reconfigurations in 
these robots are achieved by changing the interconnections among modules, the actions of docking and 
dedocking play a crucial role for the success of self-reconfigurable robots. 

A successful docking action between two connectable modules consists of at least three integrated complex 
stages. First, the robot must maneuver all relevant modules in the system so that the two docking modules are 
physically positioned close to each other. For example, for a snake-shaped robot to become a loop (connecting 
the head with the tail), all modules in the snake must bend their joints in order to bring the head of the snake to 
see the tail. Second, the two docking modules must be aligned to each other to satisfy the constraints for docking. 
This alignment is a complex process and must coordinate the actions of many modules in compliant with the 
perceived docking guidance signals. Third, once the two modules are aligned for docking, they must be pushed to 
establish the final mechanical/electronic connection. This final establishment typically requires movements in a 
precise trajectory with critical forces. 

The nature of self-reconfigurable robots also poses additional complexities for the above three stages. In a 
self-reconfigurable robot, docking is not an action local to the two docking modules but an action global to many 
modules in the configuration. For example, many modules must be moved in order to bring the two docking 
modules together, and many modules must apply their torques in order to push the docking modules with critical 
forces. Docking in a self-reconfigurable robot is also a distributed action. Due to the dynamics of robot 
configuration, we cannot pre-determine a designated module to perform the centralized control for all possible 
docking situations because any damage to this module will paralyze the entire system. Finally, docking in self- 
reconfigurable robots must also be fast and efficient (for docking is performed very frequently in a self- 
reconfigurable robot), reliable (a docked connection must be as secure as a fixed connection), and energy saving 
(an established connection should not consume any power). 

Due to these difficulties, autonomous docking remains an active research topic for self-reconfigurable 
robots. For example, Nilsson has designed a 2D self-aligning docking device but trading the device's generality 
for the tolerance of errors is still an open problem. Roufas et. al. have experimented 6D docking sensing using IR 
LEDs. Fukuda and Nakagawa studied docking with CEBOT. Murata et. al. constructed a complex mechanism for 
connecting arms. Bereton and Khosla have used visual images as guidance for docking between mobile robots. 
Their docking connector has a forklift and a receptacle and allows approximately 30-degree alignment errors. 
Their robots are skid-steered, i.e., when the forklift pins are partially in the receptacle and robot pushes straight 
ahead, the wheels of the robots would slip on the ground and allow the robot to center the pins in the receptacle. 
This feature, however, is not generally available for modular self-reconfigurable robots. Many researchers also 
assumed simplified solutions for docking. For example, the current prototypes of Polybots use tele-operations to 
assist docking. Proteo robots assume that a module can dock with another by "rolling over" onto that module and 
such actions are local and trivial. Robot Molecules by Rus et. al. sacrifice the low-power consumption 
requirement to use simple magnetic or electro-magnetic connections. 
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This section is a report of a set of integrated solutions to the docking problem in CONRO-like self- 
reconfigurable robots. Although the current experiments are for 2D docking, the challenges listed above (such as 
global cooperation, distributed control, speed and efficiency) are all present and the integration of all component 
solutions into a working system is a non-trivial*matter. The section discusses solutions for alignment, trajectory 
following, distributed inverse kinematics, and other issues in docking. Section 4.1 describes the hardware of 
CONRO docking mechanism and guidance system. Section 4.2 presents the software architecture for distributed 
control of docking. Section 4.3 gives a brief discussion on the dedocking process. Section 4.4 presents the 
method for distributed inverse kinematics. Section 4.5 reports docking experimental results in CONRO and 
compare six different alignment strategies. Finally, Section 4.6 concludes the section with a set of future research 
directions. 

4.1  CONRO Doddng/Guidance Hardware 
As we described before, CONRO modules can coimect to each other by their docking connectors located at 

either ends of a module. At one end, three male connectors are located at the three sides of the module (they are 
called Front, Left, Right), each of which consists of two docking pins. At the other end, a female connector is 
located at the tip end of a module (it is called Back), which consists of two holes for accepting other module's 
docking pins. This female connector has a locking/releasing mechanism behind the holes, and can have two 
states, hi the default or non-active state, it can accept and lock the incoming pins by a spring motion. In the 
activated state, it can release the lock by triggering a SMA actuator. The connector/leasing mechanism is power 
efficient and it consumes no electric energy when in the default state. For detailed design and implementation of 
these docking connectors, please see Section 2.3. 

CONRO modules communicate with each other using infrared transmitters and receivers. At each connector, 
there is an infrared emitter/receiver pair located between the pins/holes. When a module is connected to another 
module through a coimector, the two pairs of infrared emitter/receiver at the docked connectors will be aligned to 
form a bi-directional infrared communication link. Since there are four connectors for each module, there can be 
up to four communication links for each module. 

The infrared emitter/receivers are also used as sensors for guiding two modules to align each other during a 
docking action. When two modules are in the range of the infrared signals, they can measure the sfrength of the 
received the signal and use the measurements to estimate the quality of the alignment (i.e., orientation and 
distance) between two modules. The correlation between the signal measurement and the quality of the alignment 
is straightforward. With fixed orientations of the two modules, the measurement corresponds linearly with the 
distance between the modules. Similarly, with a fixed distance between the two modules, the measurement 
corresponds to the orientations of the modules. 

Figure 17. The measurement of docking signals 

Figure 17 shows two CONRO modules in a close distance range and illustrates the docking signal in a 
similar situation, where o and/? are the orientation angles of the two modules, rfthe distance between them, and 
the dashed line indicates the desired alignment in this particular situation. One uncertain element in this guidance 
system is the shape of infrared lobe from the emitter. There is no guarantee that a given emitter will produce an 
ideal lobe (shown in Figure 17) that points to the correct dhection and that has a smooth gradient field with a 
single maximum peak. To make a successfiil docking, the lobe of the signal must be tuned and the control 
protocol must take this imcertainty into consideration. Furthermore, according to the features of infrared 
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transmitting and receiving, adjusting one docking module alone can only result in a local maximum in the 
alignment. In order to achieve the global optimal alignment, both docking modules must adjust their orientations 
collaboratively. 

4.2 Docking Control for CONRO Robots 
As we mentioned earlier, there are three stages in a docking process. First, two to-be-docked modules must 

move close enough so that they can sense each other's docking guidance signals. Second, the two docking 
modules must use the docking guidance signals to maneuver their locations and orientations so that their 
connectors are aligned and close to each other. Finally, the modules must push the connectors into each other so 
the mechanical mechanism can be securely latched and locked. Notice that a unique challenge in docking is that 
the two docking modules are not free-floating elements, but constrained as two parts of the same body Thus the 
movement of these modules may be related and can influence each other. As a result, all three stages must 
involve many modules in addition to the two to be docked in the configuration. 

In the following discussion for the three stages, all communication between modules is subject to the 
constraint that modules can only talk to their immediate neighbors. Thus, a message from the head of a snake 
robot to the tail module must relay through all modules in the body. This communication constraint forces us to 
prefer a local and distributed control method to a centralized control method so that we do not need to assume 
any pre-designated module as a brain-like control center. 

4.2.1  Maneuvering for alignment preparation 
To bring two modules close enough for docking, we assume that the two docking modules are connected 

through a "docking chain" of modules in the current configuration, and this chain must be long enough so that it 
can bend to allow the two docking modules sense and touch each other. If we view a robot configuration as a 
paph with modules as nodes and connections as edges, then the docking chain is the shortest path in the graph 
between the two docking module nodes. 

Ut L be the number of modules in the docking chain and assume all modules in the docking chain are 
connected "straightly" through front-back connectors, then each module must bend approximately 2nlL to allow 
the two docking module to see and touch each other. In general, however, not all connections are straight and a 
connection can be perpendicular either "positively" (if it branches out on the same side of the bending direction) 
or "negatively" (if it branches out on the opposite side of the bending direction). Since a positive connection 
contributes +jt/2 to the overall bending, while a negative one contributes -nil, each module in a general docking 
chain should bend ^ 

{A-\-m-n)nllL 
where m and n is the number of "positive" and "negative" connections in the chain, respectively. Notice that 
when OT=n-0, then the above equation gives 2nlL, which is the expected value for a straight chain. 

Let B™„ and B™, be the minimal and maximal bending angle for each module, then the necessary condition 
for bending the docking chain to allow the two docking modules to sense and touch each other is 

B„,i„ <{A + m-n)7il2L<B„ max 

This necessary condition for docking can be used to check if two modules in a given configuration can dock 
with each other or not. Given any pair of modules in a configuration graph, one can find the docking chain in the 
paph using the minimal spanning tree algorithm. The values of L, m, and n can then be identified based on the 
length of the chain and the types of connections involved in the chain. Again, all these computations can be 
achieved using the powerful, distributed hormone-based control framework. 

4.2.2  The leader-follower alignment protocol 

Once the modules in the docking chain are bent using the method described above, the two docking modules 
are able to sense each other's docking guidance signals. To accomplish a proper alignment, however, the two 
docking modules must both work actively and collaboratively. This is different from many docking tasks in 
classic applications, such as a spacecraft docking to a space station or a truck docking to a loading deck where 
one side of the docking can be assumed static while the other can move freely and independently. In self- 
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reconfigurable robots, however, the movements of two docking modules are limited and constrained by the 
current robot configuration (all other modules are assumed to be held rigid), and an alignment cannot be achieved 
unless both sides of the docking adjust their orientations and positions. In a 2D environment, for example, unless 
both docking modules adjust their orientations (o and p), the desired alignment cannot be achieved. 

To solve this problem, we have investigated a number of different search strategies that adjust the 
orientations of the two docking modules in some joint fashion. One approach that works well is to engage the two 
modules in a leader-follower relationship and adjust their orientations jointly in a hill-climbing search for the 
maximum measurement of guidance signals. The basic idea is that whenever the leader module (which could be 
chosen arbitrarily) rotates to an orientation o, it will ask the follower module to perform a scan and find/report an 
orientation p for the follower that gives the best guidance signal measurement m„,,. The value p and m„,, indicate 
the goodness of the leader's orientation o in the context of aligning with the follower. In the following 
description, we call the above procedure "find the best alignment for the follower" (FBAF) and assume the 
procedure FBAF(o) returns a pair of values {p, m„,,). We also use the notation (o, (p, m„,,)), where (/?, 
m„,,)=FBAF(o), to represent a joint alignment (o, p) and its goodness /n„,,. Using these measurements, the leader 
can decide to which direction it should move its orientation in order to perform an effective search for the best 
alignment. It can also be used to decide when the alignment process can be determined. 

To decide the direction for orientation search, the leader first evaluates two consecutive joint alignments (o, 
(p, m„,,)) and (o', {p\ m'„,)), where o=o+A. The value of A represents the size of increment in orientation change, 
and the sign of A represents the direction of orientation change. If m'„,,>m„,„ then the leader selects A as its search 
direction. If m'„,,<m„,„ the leader selects A =-A as its search direction. If m'„,,=m„,., the leader repeats the above 
process until m'„i?^m„i, 

Once the direction of orientation search is determined, the above procedure can be used for the leader to find 
the best alignment by hill-climbing. Let {o,{p,m„,)) be the current alignment. The leader increments its rotation 
o'=o+A and obtains {p\m\,) for o' from the follower. If m\,:>m„,„ which indicates that o' gives a better or equal 
alignment than o, then the leader sets o=o\ p=p\ m„,.= m\,„ and continues the research. If m\,i,<m„,„ which 
indicates a decrease in the quality of alignments, then the leader determines the search and declares {o,p,m„,) as 
the best alignment for the current distance. 

Once the best alignment has been found, the two docking modules must move towards each other in the 
trajectory specified by the alignment. This will reduce the distance between the two modules and increase the 
value of m„;. Since the movements in self-reconfigurable modules are inevitably noisy and uncertain, a new 
alignment must be performed after the distance is reduced. This alignment-then-move-closer action will be 
repeated until the value of m„,, is above a threshold. This indicates that the two connectors are aligned and close 
enough, and the final pushing stage can begin. 

4.3 Establishing the Final Connection 
The final pushing stage in the docking is to have the two modules to push each other in the trajectory 

specified by the alignment. Such movements, which are also used to reduce the distance between docking 
modules during alignment, require multiple modules to coordinate their actions using inverse kinematics. For 
example, imagine that the two docking modules in Figure 17 are aligned along the dashed line. In order to move 
the left (right) docking module along the alignment line, the movements of the modules behind the left (right) 
docking module must be coordinated using inverse kinematics. It is such coordinated movements that provide the 
necessary pushing force for the finally docking stage. Since the movement must not deviate from the trajectory, 
the step of the movement must be sufficiently small in order to ensure the smoothness of the movement. It is 
interesting that the computation of inverse kinematics can be distributed among modules, as we will see in the 
next section. 

The final pushing must also overcome the friction between the docking pins and their corresponding sockets 
and latches. This friction is significant in self-reconfigurable robot because the strengths of modules' motors are 
typically limited. To overcome this problem, we have adopted the idea of dynamic lubrication. During the 
latching and locking stage, the two docking modules are also performing high-frequency small "shaking" 
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movements while pushing forward. Such movements significantly reduce the friction during docking and ensure 
that the docking pms to be securely locked by the spring latch behind the holes. 

4.4 Distributed Inverse Kinematics 
One action that is frequently used in docking is to move a docking module on a given trajectory For 

example, after two docking modules are aligned, they must move along their tip directions respectively to reduce 
the distance between them. Similarly, such movement is also used to push the docking pins into the holes and 
lock them by the spring latch. 

A 

Figure 18. Inverse kinematics for three modules 

To generate such actions, a chain of modules that is immediately connected to the docking module must 
coordinate their movement using inverse kinematics. This is similar to the classic robotics problem of controlling 
a robot arm to put a peg into a hole. The difference is that each module in a reconfigurable robot is an 
independent and autonomous system, while in classic robotics applications all motors and sensors are controlled 
by a single computer. 

To distribute the computation for inverse kinematics among reconfigurable modules, let us consider a three- 
module chain Illustrated in Figure 18. Given the current angles of each module 0,, 6,, and 9,, and the lengths of 
the relevant segments m and n, we can compute the tip position (x,, y,) using the forward kinematics as follows- 

jc,=mCos(ei)+mCos(ei+e2)+nCos(e,+e2+e,) (3) 
>',=mSin(ei)+mSin(e,+e2)+nSin(e,+e2+e,) (4) 
a=e,+e2+e, (5) 

Assume the tip is to be moved along the a direction by a distance 6, then the new tip position {x\ y\) the 
new middle position {x-,, y\), and the new module angles 0 „ 82, and 0,, can be computed as follows: 

x-y= j:,+5Cos(a) /^^ 
};•,= y,+5Sin(a) q\ 
X7= x'T,-nCos{a.) ^g\ 
y2= yy-nSm{a) ^9) 

W=atan(y2/jc'2) (10) 
e ,=W+acos[ x'2 / 2mCos(W)] n\\ 
e2=2w-2e, ;,2) 
e,= a-(e,+eo (B) 

Let the three modules from the origin to the tip of the chain be named as Ml, M2, and M3 then under the 
constraints that modules can only communicate with their immediate neighbors, the above computation can be 
distributed among the three modules as follows: 

Ml computes A=mCos(^i) and B=mSin(6'i) and sends [A.B,^,] to M2; 
M2 computes <*= ^1+^2, C=A+mCos(0) and D=B+mSin(0) and sends [<z),C,D] to M3- 
M3 computes (3)-(9) and sends [x '2, y '2] to M2; 
M2 computes (10) and sends [W, A: '2] to M1; 
Ml computes ^'1 by (11) and sends [^1] to M2; 
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M2 computes 0% by (12) and sends \d i+fi* 2] to M3; 
M3 computes 0 3 by (13). 

This example illustrates that by sending intermediate results to neighbor modules, a chain of modules can 
compute the inverse kinematics in a distributed fashion. This style of computation is both desirable and 
sometimes necessary for self-reconfigurable robots because no single module can be assumed always available as 
the control center and every module is independent, autonomous, and has very limited on-board computation 
resource. 

4.5 The Process of Dedocking 
Compared to docking, dedocking is a relatively simple process because no alignment is needed. When a 

robot decides to disconnect an existing connection, it releases the latching mechanism by activating the SMA of 
the female connector for a short period of time. During this time, the robot "pulls" the two dedocking modules 
apart using the inverse kinematics method described above with a negative value for the distance parameter 5. 
The robot can check if a dedocking is successful or not by measuring the guidance signals between the two 
dedocking modules. If the measured value is below a threshold in comparison with the value when the connection 
is in place, then the dedocking succeeds and the robot can treat the two modules as disconnected. 

4.6 Experimental Results 
The above techniques and methods are implemented on CONRO reconfigurable modules, and we have 

conducted experiments on a 7-module snake robot to dock its head with its tail on a regular office table surface. 
We have made 10 runs each starting from a random initial state of being a straight snake and each run includes all 
three stages of docking. The average speed is approximately 3minutes/docking, and the successful ratio is 80%. 
The experiments are autonomous (i.e., all programs are on the modules) and modules are powered by an external 
power supply and triggered by a single message issued through an external command line. 

Table 7. Comparison of alignment protocols 

Leading schema Rotating around the point of 
Joints Internal Signals External Signals 

Leader and Follower (56±5)(7±3) (46±]0)(21±8) (40+10) (34±9) 
Alternate Leadership (54±5)(11±3) (43±5) (29±9) (41±7)(38±10) 

We have also conducted a set of experiments to compare the difference between six alternative alignment 
search protocols (see Table 7). Each experiment is a single increment in the search process although it may 
involve many movements of modules. All experiments are from the same initial condition and repeated for 10 
runs. In Table 7, each entry reports (1) the quality of the resulting alignment (i.e., the signal value measured at the 
end of the experiment), and (2) the number of module movements in each experiment, which is directly in 
proportional to the time needed to complete the alignment. As we can see, the protocol of leader-follower with 
rotating around the joints of modules finds the best alignment and requires the least number of movements and 
time. 
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5   Recommendations 
The work presented here represents work done on self-reconfiguration in a University research environment. 

The work is sound, has proven the concepts, although much more research can always be done. The main 
recommendation here is to say that the work should be taken to the next step of a field test where it will be tested 
for Field Utility by being carried to the field by a Warfighter and tasked to enter a restricted space and report on 
what is found. Such a test will wring out the functions needed to make the system a partner to the Warfighter. 

Going to a field test requires that the system be subjected to more rigorous engineering approach. The 
present prototype is a research one and is not optimized by professional engineers; the prototype is open to the 
atmosphere, a soldier needs a system that can operate in the mud of Vietnam, the desert of Kuwait, caves in 
Afghan, the urban warfare environment of WWII Berlin, or the World Trade Center. The present prototype uses 
ordinary wires where the professional prototype would flex circuits; the present prototype is incrementally 
driven, the professional prototype needs to know its geometric position and have a geographic world model. The 
command, control and motion of the system needs to provide more power in all dimensions per cubic volume. 
The present system uses low cost motors from radio-controlled airplanes, a new system should use state-of-the- 
art miniature neodymium iron boron magnet servo-motors. The present system uses a processor with 4k ROM 
that cannot support an operating system and has no interrupts for real time control; the new system needs a full 
real-time operating system. The computer field has advanced since the present hardware design was completed 
and advantage needs to be taken of the advances. 

Similarly for sensors, miniature GPS chips were only a gleam in the designer's eye when the present 
CONRO was designed but the huge gains in miniaturization of sensors for mobile telephones (now including 
cameras, GPS, color displays, speech recognition good enough for verbally commanding the system and many 
other functions) promise material gains in future miniature reconfigurabie robotics. 

What we learned in building the CONRO robot makes us confident in building new generations of 
multifunctional robots for future compact systems. There are many improvements of CONRO that are possible 
The current module weighs 110 gm, including batteries, which last about 35 minutes in a continuous locomotion. 
A CONRO module is self-contained but has no outer protective shell. The sensor and processing hardware was 
circa 1998 microprocessor technology and thus had limited functionality (32 variables and 2K flash memory and 
limited processor power). Many currently available capabilities were not available to us, e.g. GPS and miniature 
cameras that have been developed for the commercial cell phone industry. The same comment applies to many 
other devices including sensors, especially MEMS sensors. We estimate that we can reach our design goal of less 
than 30 gm per module by using newer 2002 technology including: new custom motors that use Neodymium- 
Iron-Boron magnets, a lighter structural material than the delrin material that we used in CONRO, better chip 
packaging technology (no zero-insertion force sockets), thin rather than normal printed circuit boards, and 
omitting the apparatus and space needed for docking used in reconfiguration. We expect that these improvements 
will result in a much longer battery life and a ready-to-deploy system for military applications. 

In summary, the research prototype shows promise of providing a Warfighter with a new tool for the 
challenges of the new century of terrorism. The recommendation is that we harden the system for the challenges 
of the future missions. 

This document reports research undertaken at the 
U.S. Army Soldier and Biological Chemical Command, 
Soldier Systems Center, Natick, MA, and has been 
assigned No. NATICK/TR- 0316M in a series of reports 
approved for pubhcation. 
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Abstract 
How do multiple robots self-organize into global patterns 

based on local communications and interactions? This paper 
describes a theoretical and simulation model called "Digital 
Hormone Model" (DHM) for such a self-organization task. The 
model is inspired by two facts: complex biological patterns are 
results of self-organization of homogenous cells regulated by 
hormone-like chemical signals [6], and distributed controls can 
enable self-reconfigurable robots to performance locomotion and 
reconfiguration [1-3]. The DHM is an integration and 
generalization of reaction-diffusion model [4] and stochastic 
cellular automata [19]. The movements of robots (or cells) in 
DHM are computed not by the Turing's differential equations, 
nor the Metropolis rule [5], but by stochastic rules that are based 
on the concentration of hormones in the neighboring space. 
Experimental results have shown that this model can produce 
results that match and predict the actual findings in the biological 
experiments of feather bud formation among uniform skin cells 
[6]. Furthermore, an extension of this model may be directly 
applicable to self-organization in multi-robot systems using 
simulated hormone-like signals. 

1. Introduction 

This paper' is to develop a general computational model 
for self-organization in multi-robot systems. In particular, 
we describe the Digital Hormone Model (DHM) that is 
generalized from an existing distributed control system for 
self-reconfigurable robots [1-3]. The model is inspired by 
the fact that many complex patterns in biological systems 
appear to be the results of self-organization among 
homogenous cells regulated by hormones, and self- 
organization is based on local interactions among cells 
rather than super-imposed and pre-determined global 
structures [6, 7]. The paper describes the model in detail, 
reports the experimental results in simulating feather buds 
formation among homogeneous skin cells, and finds a 
number of correlations between individual hormone 
difliision profiles and the features of final patterns. These 
results match the findings in the actual biological 
experiments and predict cases that have yet been observed 
in biological experiments but consist with the expected 
behaviors of hormone-regulated self-organization. 

We are grateful that this research is in part supported by the AFOSR 
grants F49620-01-1-0020 and F49620-01-0441, and the DARPA contract 
DAAN02-98-C-4032. The second author is supported by NSF IBN 
9808874 and NIH AR 42177. 

2. Self-Organization in Nature 

Self-organization is ubiquitous in nature. It appears in 
physics, chemistry, materials sciences, and others [12]. But 
perhaps the richest source for self-organizational 
phenomena is biological systems. Here, we will describe 
two of the most fascinating phenomena that are related to 
self-organization in multi-robot systems: moiphallaxis and 
feather formation. 
Morphallaxis is a process by which an organism can 
regenerate a part or the whole from a fragment by self- 
reorganization of cells without cell proliferation. This is a 
process of tissue reorganization observed in many lower 
animals following severe injury, such as bisection of the 
animal, and involves the breakdown and reformation of 
cells, movement of organs, and re-differentiation of tissues. 
The result is usually a smaller but complete individual, 
derived entirely from the tissues of part of the original 
animal. It is believed that such a reorganization process is 
the most efficient way for simple organisms to self-heal 
and self-regenerate. This is also extremely important for 
self-reconfigurable robots to perform self-repair fimctions. 
One of the most remarkable examples of morphallaxis is a 
type of invertebrate freshwater animal called a hydra. If a 
hydra is cut in half, the head end reconstitutes a new foot, 
while the basal portion regenerates a new hydranth with 
mouth and tentacles. Even if a hydra is minced and the 
pieces scrambled, the fragments grow together and 
reorganize themselves into a complete whole. How this 
dramatic self-healing and self-adaptation process takes 
place is still a mystery. 
Another interesting self-organization phenomenon in 
biological systems is the formation of feathers. In chickens, 
for example, feathers are developed from skin cells during 
an early development stage before they hatch from the 
eggs. Homogeneous skin cells first aggregate and form 
feather buds that have approximately the same size and 
space distribution. The feather buds then grow into 
different types of feathers depending on the region of the 
skin. Many earlier theories believed that the periodic 
patterns of the feather buds are formed by sequential 
propagation and orchestrated by some "key" skin cells. 
These key cells occupy strategically critical positions on 
the skin. They first command their neighboring cells to 
form one sequence of feather buds, and then this sequence 
propagates to form other sequences of periodic patterns. 
However, recent findings in biological experiments, as 
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Figure 1: Self-organization in featlier formation. 

shown in Figure 1, have challenged ttiese theories. Chuong 
and his colleagues [6, 7] first separated the embryonic 
chicken skin into a set of disassociated mesenchyme (i.e., 
skin cells before becoming feather buds) and an intact 
epithelium (a thin layer on which skin cells can move and 
aggregate). They then constructed a reconstitution system 
in which all mesenchymal cells are placed on the 
epithelium again, but scrambled and reset to an equivalent 
state so that they have the same probability to become 
primodia or interprimodia (the feather buds). Surprisingly, 
the cells in this reconstituted system still grow into patterns 
of feather buds, and such growth occurs almost 
simultaneously. These findings uncouple the feather bud 
pattern formation fi-om the sequential propagations, and 
they suggest that there are no predetermined molecular 
addresses, and that the p^odic patterning process of 
feather morphogenesis is likely a self-organizing process 
based on physical-chemical properties and reactions 
between homogeneous cells. For robotics research, these 
results indicate that it is possible for multiple robots to self- 
organize into interesting global patterns based on local 
communication and interactions vvithout any pre- 
determined global patterns or structures. 
During these e3q)eriments, the biologists also observed 
some interesting relations among the density of cell 
population, the individual hormone difiiision profiles, and 
the size and space distribution of the final patterns. In 
particular, they observed that while the number of formed 

feather buds is proportional to the cell population density, 
the size of the feather buds remains approximately the 
same regardless of different population densities. The size 
of the feather buds, however, is related to the difl^ion 
profiles of the activator and inhibitor hormones secreted 
fi-om the cells. If the concentration ratio of the activator to 
the inhibitor is high, then the final size of the feather buds 
will be larger than usual. If the ratio is balanced, then the 
size of the formed feather buds will be normal. If the ratio 
is low, then the size of the formed pattern will be smaller 
than usual. These observations are most interesting to us 
because they can be used as the basic criteria for evaluating 
computational models of self-organization in multi-robot 
systems. 

3. Computational Models for Self-Organization 

Throughout the history of science, there have been many 
computational models for self-organization. Perhaps one of 
the earliest is Turing's reaction-difRjsion model [4], in 
which he analyzed the interplay between the difiiisions of 
reacting species and concluded that their nonlinear 
interactions could lead to the formation of spatial patterns 
in their concentrations. Turing's model uses a set of 
differential equations to model the periodic pattem 
formation in a ring of discrete cells or continuous tissues 
that interact with each other through a set of chemicals he 
called "morphogens." Assuming that there are r = (1,...N) 
cells in the ring, and two morphogens X and Y among 
these cells, and letting the concentration of X and Y in cell 
r be Xr and Y,, the cell-to-cell diffusion rate of X and Y be 
u and V, and the increasing rate of X and Y caused by 
chemical reactions be J{X,Y) and g(X, Y), respectively, 
Turing modeled the dynamics of this ring as the following 
set of 2N differential equations: 

dXJdt =m,Yr} + «(X^, - 2X, + X,.,), 
dYM = g(X,,Yr) + v(Y^, - 2Y, + Y,.,). 

By analyzing the solutions of these equations, Turing 
illustrated that a given ring of cells, which initially has the 
uniform concentration of Y and X, can self-organize 
through random fluctuations, chemical reactions, and 
difiusion, into a ring of periodic patterns in the 
concentration of Y. Two important conditions for Turing 
stability are: (1) between X and Y, one must be the 
inhibitor and the other activator, and (2) the inhibitor must 
have a greater difiusion rate than the actuator. 
Turing's reaction-diffusion model was startlingly novel, 
and it has been supported both mathematically [13] and 
experimentally [14], and many applications are described 
in [15]. Interestingly, Witkin and Kass [16] extended the 
traditional reaction-diffusion systems by allowing 
anisotropic and spatially non-uniform diffusion, as well as 
multiple competing directions of diffusion. They use these 
models to synthesize textures with different patterns. 
Cellular Automata (CA) [8,18], especially those that have 
stochastic characteristics [19], are another important 
modeling technique for self-organization. Perhaps the most 
&nous illustration of self-organization using CA is the 
game of Life, where randomly distributed cells on a space 
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of grids will live or die based on a set of very simple and 
detenninistic rules. Life is a deterministic CA, but when 
rules of a CA have stochastic characteristics, then they 
could also be capable of modeling random fluctuations in 
the environment, and that may be a critical element in 
simulating interactions among many autonomous elements 
that perceive and react to local information in the 
environment In fact, the Digital Hormone Model to be 
proposed here is essentially an integration of stochastic 
CA, reaction-difiusion models, and network-like difiiision 
space with dynamic topology. 
Amorphous conq)uting is another interesting technique that 
can be potentially useful for modeling self-organization. In 
an amorphous system, a large number of irregularly placed 
asynchronous, locally mteracting computing elements are 
coordinated by diffiision-like messages and behave by 
rules and state maricers. These systems have akeady been 
^plied to building engineered systems for elements to 
organize and behave in predejBned trend [9, 10]. Similar 
ideas may be directly applicable to self-organization [20], 
povided that they do not rely solely on the positional 
information of the self-organizing elements. 
Pheromone-based multi-agent systems are also of interest 
as a tool for studying self-otganization. There are aheady 
some experimental results [11], showing that a set of 
autonomous agents can use pheromones to form mteresting 
and complex global behaviors. Such an idea shares many 
common design principles described here except that 
pheromones emphasize more difiiision than reaction. 

4. The Digital Hormone Model 

The Digital Hormone Model (DHM) is designed for 
simulating,     understanding,     and     controlling     self- 
organization in large-scale multi-robot systems. In this 
model, robots are simulated as cells that secrete hormones, 
and hormones di£fuse and influence the behaviors of other 
cells. The Digital Hormone Model consists of a space (we 
use grids in this paper) and a set of moving cells. The term 
"cell" here can stand for any type of autonomous and 
intelligent elements, such as robots, agents, unmanned 
vehicles, mobile sensors, network nodes, or weapons. 
Among the grids, cells can live, evolve, migrate, or die as 
time passes. £ach living cell occupies one grid at a time 
and   a   ceU   can   secrete    chemical   hormones   (or 
communication signals in general), which diffuse into its 
neighboring grids to influence other cells' behaviors. 
Hormones   may   have   different   types   and   diffusion 
functions. Two types of hormones are most common: an 
activator hormone that will encourage certain cell actions, 
while an inhibitor hormone will prohibit certain cell 
actions. We assume that hormones may react to each other 
(summation, subtraction, or modification), and may difliise 
to the neighboring grids according to certam factions. 
Similar to the extensions used in [16], we allow anisotropic 
and spatially non-uniform diffusion. Cells are autonomous 
and intelligent robots that can react to hormones and 
perform     actions     such     as     migration,     secretion. 

differentiation, proliferation, death, or adhesion. 
At any given time, a cell selects and executes one or more 
actions according to a set of internal behavior rules. These 
rules can be deterministic or probabilistic. We assume that 
the rules are given and will not cause a cell to select 
conflicting actions. Given the grids, cells, hormones, 
actions, and rules, the DHM works as follows: 

1. All cells select actions by their behavior rules; 
2. All cells execute their selected actions; 
3. All grids update the concentration of hormones; 
4. Go to Step 1. 

To illustrate the above definitions, let us consider a sinq)le 
DHMo in Figure 2, where cells (shown as black dots in the 
grids)   migrate   on   a 
space of N^ grids. The 
space is a torus in the 
sense that the leftmost 
and rightmost columns 
are neighbors, and the 
topmost and 
bottommost  rows  are 
neighbors.    Cells    in 
DHMo have only two 
actions: secretion and 
migration,     and     the 
former  is  a  constant 
action     that     always 
produces two 
hormones: the activator 
A and the inhibitor I. 
The difiiision rates for 
A and I secreted from a 
cell at the grid (a,b) to its surrounding grids (x,y) are 
characterized by Guassian distributions: 

/A(x,y) = (2JKJ^)-' exp{[(x-a)^+(y-b)V2a^} 
Mx.,y) = - (27tp^)-' exp{[(x-a)^4<y-b)^]/2p2} 

where a < p in order to satisfy Turing's stability condition. 
Notice that the activator A has the positive vdue and the 
inhibitor I has the negative value. Because a < p, A has a 
sharper and narrower distribution then I. We assume that 
the two hormones react to each other so that the 
concentration of hormones in any given grid can be 
computed by summing up all present "A"s and 'T's in the 
grid. In Figure 2, we have illusti^ted in the grids the 
combined hormones around a single ceU and around two 
nearby cells. Since the grids are discrete, the rings around 
the cells are shown as squares instead of circles. 
In this simple model DHMo, two simple rules govern the 
cell's actions. One rule states that "secrete A and I for 
every step", and this means that each cell secretes these 
hormones at every step. The second rule states that 
"migrate to an iomiediate neighbor grid based on the 
hormone distribution in these neighbors." More 
specifically, the probability for a cell to migrate to a 
particular neighboring grid (including the grid it is 
currenfly occiqjying) is proportional to the concentration of 
A and inversely proportional to the concentration of I in 

Figure 2: The simple DHMg 
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that grid. This rule is fundamentally stochastic, so that the 
selection of migrating grid is non-deterministic. To 
implement this rule, let the hormone value in the 
occupying grid be ho and let the values in the eight 
immediate neighbors be hi, h2, hs, h4, hs, hg, /??, and hg, 
respectively. Based on their signs, these values are grouped 
into three groups: Gl, G2, and 03, where the members in 
Gl all have positive values (say sum to PGI), those in G2 
have zero values, and those in G3 have negative values. To 
decide which group to migrate to, a random number x is 
generated in the range of (0, 100*PGI+10*|G2|+|G3|]. If 
0<;C<=100PGI, then the cell will migrate to Gl. If 
100PGI<X<=100PGI+10|G2|, then the cell will migrate to 
G2. Otherwise, the cell will migrate to G3. The decision 
ensures that a cell will migrate to Gl with the highest 
probability, to G2 with lower probability, and to G3 with 
the lowest probability. After a group is selected, we then 
select a grid from the group with a similar procedure. For 
example, to select a grid from Gl, a random number will 
be generated in the range of (0, hu+ hi2+ hi3+...+ A,|G;|], 

where hy are individual values in Gl (Aj,>0), and a grid will 
be selected depending on where the number falls in the 
range. This ensures that grids with higher concentrations of 
the activator hormone will be selected with higher 
probabihties. To select a grid from G2, we order the grids 
in the group gi, g2, ..., g|G2| (note that all these grids have 
zero hormone values), and a random number y is 
generated in the range of (0, |G2|], and the grid of gy is 
selected. To select a grid from G3, a random number will 
be generated in the range of (0, (-hji)' + {-hj2y + {-hjs)' 
'+...+ {-hj\G3\)'\ where hy are individual values in G3 
(/i,y<0), and a grid will be selected depending on where the 
number falls in this range. This ensures that grids with 
lower concentrations of the inhibitor hormone will be 
selected with higher probabilities. 
Notice that the above mle for selecting migration direction 
is different from the Metropolis rules used in simulated 
annealing [5], which first randomly selects a neighbor 
without considering the concentration of hormones, and 
then makes a go or no-go decision based on the energy 
difference and the current temperature. In the Digital 
Hormone Model, the notion of temperature is embedded in 
the decision mles described above. Interestingly, our 
experiments show that the Metropolis rule does not allow 
cells to converge into patterns in this model no matter what 
temperature is set. 
Since all movements are local and synchronized, there may 
be a chance where multiple cells "colhde" in the same grid. 
The collision of cells is solved in a simple manner. All 
cells fnst "virtually" move to the grids they selected. If 
there are multiple cells in the same grid, then the extra cells 
will be randomly distributed to those immediate 
neighboring grids that are empty. This is an enviroimiental 
function, not a cellular action. But this action will ensure 
that no grid is hosting more than one cell at any time. 

5. The Experimental Results of the DHM 

Using the digital hormone models, we hope to leam 
valuable detailed computational knowledge about how 
hormones and receptors affect the result of self- 
organization in a large system with many autonomous 
elements. In particular, the initial research issues we would 
like to investigate are as follows: 
• Will the proposed Digital Hormone Model enable cells 

to self-organize into pattems at all? Although self- 
organization has been widely studied by many 
different models, this is perhaps the first attempt to 
model mobile intelhgent elements that have dynamic 
structure topology. 

• Will the size of fmal pattems be invariant to the cell 
population density? Assuming that the cells' hormone 
diffusion profiles are fixed, will the results match the 
observations made in the biological experiments? 

• Will the hormone diffusion profiles affect the size and 
shape of the final pattems as shown in the biological 
experiments? 

• Will an arbitrary hormone diffusion profile enable 
self-organization and pattern formation? In general, 
how do the profiles affect the results of self- 
organization process? 

To find solutions for these questions, we ran two sets of 
experiments using the simplified digital hormone model 
DHMo described above. In the first set of experiments, we 
set the hormone diffusion profile to approximate the 
standard distributions. For any single isolated cell, let the 
cell's «* ring of neighbors be the neighboring grids at a 
distance of n grids away from the cell. Using this 
definition, we defme the concentration level of the 
activator hormone at the cell's surrounding grids as 
follows: 0.16 for the 0* ring (i.e., the occupying grid), 0.08 
the 1" ring, 0.04 the 2"'' ring, 0.02 the 3"* ring, and 0 the 4* 
and beyond. For the inhibitor hormone, the concentration 
levels for the 0* through the 4* rings of neighbors are: - 
0.05, -0.04, -0.03, -0.02, and -0.01, respectively, and 0.0 
for the 5* ring and beyond. Thus the combined 
concentration levels of hormones at the 0* through 4* 
rings are: 0.11, 0.04, 0.01, 0, and -0.01, respectively, and 
0.0 for the 5* ring, and beyond. We assume that the 
concentrations of hormones secreted by a cell at grids 
beyond the 4* ring are so insignificant that they can be 
practically ignored. 
Given this fixed hormone diffusion profile, we have run a 
set of simulations on a space of 100x100 grids with 
different cell population densities ranging from 10% 
through 50%. Starting with cells randomly distributed on 
the grids, each simulation runs up to 1,000 action steps, 
and records the configuration snapshots at steps of 0, 50, 
500, and 1,000. As we can see from the results in the upper 
part of Figure 3, cells in all simulations indeed form 
clusters with approximately the same size. These results 
demonstrate that the digital hormone model indeed enables 
cells to form pattems. Fiulhermore, the results match the 
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Figure 3: Two sets of experimental results on DHMo 

observations made in tiie biological experiments. The size 
of the final clusters does not change with cell population 
density, but die number of clusters does. Lower cell 
densities result in fewer final clusters, while higher 
densities form more clusters. 
In the second set of experiments, we started with the same 
cell population density, but varied the hormone diffusion 
profiles. We wanted to' observe the effects of different 
hormone profiles on the results of pattern formation. As we 
can see fiom the results shown in the lower part of Figure 
3, when a balanced profile of activator and inhibitor is 
given (see the second row), the cells will form final 
patterns as in the first set of experiments. As the ratio of 
activator over inhibitor increases (see the third row), the 
size of final clusters also increases. These results are an 
exact match with the findings in the reported biological 
experiments [6]. 
When the ratio of A/I becomes so high that there are only 
activators and no inhibitors (see the fourth row), then the 
cells will form larger and larger clusters, and eventually 
become a single connected cluster. On the other hand, 
when the ratio is so low that there is only inhibitor and no 

activator, then the cells will never form any patterns (see 
the first row), regardless of how long the simulation runs. 
This shows that not all hormone profiles enable self- 
organization. These results are yet to be seen in biological 
experiments, but they are consistent with the principles of 
hormone-regulated self-organization and thus qualified as 
meaningful predictions of cell self-organization by 
hormones. 
The results presented in Figure 3 not only demonstrate that 
the proposed digital hormone model is indeed an effective 
tool for simulating and analyzing self-organization 
phenomena, but that it is also capable of producing results 
that match the actual findings in the biological experiments 
and can predict the possible outcomes for new biological 
experiments. The results show that hormones play a critical 
role in self-organization, and they enable many 
autonomous elements to form globally interesting patterns 
based on only their local information and interactions. This 
provides a departure point for new hypotheses, theories, 
and experiments for self-organization. Since the model is 
mathematically adjustable, it is much more economic and 
efficient for scientists, including biologists, to design new 
experiments and to hypothesize new theories. 
In addition to changing the ratio of activator and inhibitor 
hormones, we also have also varied the shape of hormone 
diffusion profiles and observe their effects on the features 
of the final pattems. For example, we have observed that if 
the profile is a narrow and long sandwich with the same 
orientation (the activator is in the middle and the inhibitors 
are on the outside), then cells will form striped patterns as 
shown in Figure 4. This 
shows that given the 
proper hormone 
dif&sion profiles, the 
DHM will allow cells 
to form pattems with 
different shapes. 
Furthermore, we have 
also experimented with 
different mechanisms 
for decision making 
when selecting the 
migration direction, 
including the random 
procedure and the Metropolis rule. Experimental results 
have shown that Metropolis rule does not enable cells to 
aggregate into groups no matter what temperature setting is 
used. This is a bit unexpected, but one possible reason is 
that Metropolis rule first randomly selects a neighbor 
without considering the concentration of hormones, and 
then makes a go or no-go decision based on probability. 
This does not reflect the true distribution of hormone 
concentration in the neighboring grids. Similarly, and as 
expected, the random procedure for selecting migrating 
directions does not produce any interesting results eiflier. 

Figure 4: Difiiision profile 
for stripe patterns. 
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6. Extend DHM for Multi-Robot Self-Organization 

In the above discussion, we have used grids as an 
approximation for space in which robots can move around. 
Furthermore, we have assumed that grids can also perform 
computations to update their hormone concentration. To 
relax these assumptions and extend DHM for multi-robot 
self-organization, we must fmd a way to allow robots 
themselves to update the hormone-concentration in their 
surrounding space. 
To simulate hormones in grids, we assume robots have 
wireless communications and can send each other 
"hormone signals" that carry the necessary information of 
hormone type and diffusion functions. The strengths and 
direction of the signal can also be used to calculate the 
distance and directions between robots, which are the 
sources of different hormones. Using the information, a 
multi-robot system can simulate a DHM as follows: 

1. All robots select actions by their behavior rules; 
2. All robots execute their selected actions; 
3. All robots broadcast and receive hormone signals; 
4. All robots update the concentration of hormones 

in their surroimding space; 
5. Go to Step 1. 

Furthermore, die discrete grids should be generaUzed 
into continuous space. Since we have used standard 
distributions for tiie hormone diffusion functions, this 
generalization is not difficult. Instead modeling the 
neighbors using grids, a robot's neighboring space will be 
modeled as a continuous circle, with directions ranging 
from 0.0 to lit. Thus, robot's moving direction will also 
take a continuous value. To implement this extension, each 
robot only requires a compass to specify the continuous 
direction. The computation in step 3 may be expensive, but 
we believe a proper and inexpensive algorithm can be 
designed to estimate the distribution of hormones in a 
robot's surrounding space without demanding outrageous 
computational resources. 

7. Conclusion 

We have presented the Digital Hormone Model (DHM) 
as a new computational model for self-organization in 
multi-robot systems. As for future research directions, we 
will enrich the actions, rules, and hormones in this model, 
develop the proper algorithms for computing hormone 
diffusion in continuous space using robots' onboard 
resources, and simulate larger scale and more complex 
self-organization phenomena using real robots. We will 
also develop formal relationships between hormone 
dififiision profiles and the final global patterns, and 
investigate the strengths and limitations of DHM for self- 
organization in general. 
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Abstract 
Task reallocation in a multi-robot organization is a 

process that distributes a decomposed global task to 
individual robots. This process must be distributed and 
dynamic because it relies on critical information that can 
only be obtained during mission execution. This paper 
presents a representation for this challenging problem and 
proposes an algorithm that allows member robots to trade 
tasks and responsibilities autonomously. Preliminary 
results show that such an algorithm can indeed improve the 
efficiency of organizational performance and construct a 
locally optimal (hill climbing) task allocation during 
mission execution. 

1. Introduction 
In an organization of multi-robots, task reallocation is 

the process of distributing a global mission task, which has 
been decomposed into subtasks, to the robots in the 
organization. In contrast to the problem of resource 
allocation, task reallocation emphasizes the task migration 
and organizational changes among robots, rather than 
allocation of resources. 

Traditionally, task reallocations are often considered in 
a centralized and static setting. A single controller robot 
would gather and examine all the relevant information 
about the current organization and mission, then decide 
and allocate tasks for every fellow robot. The weakness of 
this approach is that the accuracy of this global information 
is not always possible to obtain and often hard to maintain. 
The central controller must know the decomposition of the 
global task and the required capabilities and resources for 
each subtask. It must also know every robot's available 
capabilities and resources. This approach also creates a 
fragile bottleneck in the organization. Any failures to the 
controller robot will paralyze the entire organization. A 
distributed task allocation negotiation system is presented 
in [1], which is based on the contract net protocol. 
However, this work is different form the proposed 
approach in this paper, since our approach considers 
dependencies among subtasks as a criterion for task 
reallocation. 

Many previous approaches for task reallocation also 
assume a known evaluation function for measuring the 
quality of task allocation, and this function remains 
unchanged during the process of problem solving. For 
example, [2] solves task allocation by analyzing the 

evaluation function and making all necessary decisions 
before the problem solving starts. Similarly, [3] assumes 
that the values of coalitions are computable before the 
execution of the organization. 

In real-world applications, a solution to task allocation 
must consider the dynamic aspects of the environment and 
unexpected changes in robot behaviors because a given 
evaluation function might be inaccurate and the 
capabilities and resources of robots may change. Robots in 
an organization must be able to negotiate without any fixed 
leaders and find a satisficing solution for task allocation. 

Task reallocation is closely related to the problem of 
self-organization, where the main objective is to decide 
who does what and how to collaborate with others. 
However, self-organization is a very diverse natural 
phenomenon, and a coherent and general definition is still 
in debate. For example, [4] defines an organization as a set 
of problem solvers with "information and control 
relationships." [5] describes an organization as a set of 
production systems with shared variables. [6] describes an 
organization as a set of "routines". [2] models an 
organization as a task dependent structure that includes the 
task units to be done, the participating (universally 
capable) robots, an assignment of the tasks to the robots, 
and a workflow structure dictates the task distribution and 
result assembly. Most of these definitions, although they 
provide valuable case studies, are not operational for task 
reallocation during problem solving. 

This paper proposes a new approach to the problem of 
distributed and dynamic task reallocation based on the 
principles of self-organization. The approach deals with the 
dynamic changes in the robots and in the environment by 
reallocating tasks based on the performance of robots. 
Such reallocations are made by individual robots 
themselves and require no central controller robot to know 
the global knowledge of the organization and task 
progress. To focus our attention on the organizational 
aspects of the problem, we simplify the measurement of 
performance by considering the costs of communication 
only. Our approach is similar to the bottom-up approaches 
for self-organization. [5]. However, we do not assume that 
robots have universal capabilities (i.e., every robot can 
handle every subtask) and the population of robots can be 
changed arbitrarily. 

In this paper, we define a result of task reallocation as 
assignment of robots to a role-graph, and define the 
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process of task reallocation as the optimization of these 
assignments, with respects to the dynamic cost function. In 
a role-graph, a role node is a set of responsibilities (or 
subtasks) for the given task, and a role-relationship edge is 
a commitment between roles to communicate certain types 
of information (such as subtasks, solutions, actions, or 
data). This representation separates the role requirement 
from the robots' capabilities, and makes the assignment of 
robots to roles an essential task in organization. In this 
paper, we assume that an initial role-graph is given to the 
robots, but the robots are allowed to modify the role-graph 
at will. As we will see later, these modifications include 
trading tasks and responsibilities among robots, and such 
modifications can affect the structure of an organization. 
With this representation, task reallocation is a team- 
learning process for adapting a role-graph and searching an 
optimal robot assignment to the role-graph based on 
performance results during problem solving. 

The rest of the paper is organized as follows. Section 2 
gives a formal definition for the problem of distributed and 
dynamic task reallocation. Section 3 presents a solution 
approach based on local search with two novel heuristics 
for task-trading and responsibly-trading among robots. 
Section 4 describes the SOLO algorithm that implements 
the above approach. Section 5 presents the experimental 
results of the SOLO algorithm. Section 7 concludes the 
paper with future research directions. 

2. Distributed and Dynamic Task Reallocation 
To study the problem of distributed and dynamic task 

reallocation in a domain-independent fashion, it is 
necessary to ground the research on a rigorous 
computational foundation that is domain-independent and 
decomposable among multiple robots. Examples of such 
foundations include Distributed Constraint Satisfaction 
Problems (DCSP), Distributed Bayesian Networks, 
Contract Nets, and Graphical Models [7]. In this paper, we 
shall focus on DCSP to investigate the feasibility of the 
approach. 

A Constraint Satisfaction Problem (CSP) is commonly 
defmed as assigning values to a list of variables V from a 
respective list of domains D such that a set of constraints C 
over the variables is satisfied. For example, we can define 
an example CSP, as follows: V=[x,, x^ xj, D=[{\,2}, [2], 
{1,2}], and C=[(x,^,), (x^i^,)]. Then a solution for CSP, is 
(x,,X2,x^)=(2, 2, 1). A distributed CSP is a CSP in which V, 
D, and C are distributed among multiple robots. A DCSP is 
solved if each robot solves its local portion of the CSP and 
the collection of all local solutions is a solution to the CSP. 
For instance, we can partition the above example into two 
parts: V,=[x„x,], £),=[{ 1,2},{2}], C,=[(x,i^,)] and V,=[x,], 
Dj=[{l,2}], Cj=[(x2?tiCj)], and assign them to two robots 
respectively. Then, a solution to the DCSP is (A:^,J:J)=(2,2), 
and {Xj)=(l). In the standard DCSP, however, task 
reallocation is not an issue because the assignment between 
robots and variables are given and static. 

To generalize DCSP to address the problem of 
distributed and dynamic task reallocation, we map tasks to 

variables, task dependencies to constraints between 
variables. A task is solved if the corresponding variable is 
assigned a value that does not violate any involved 
constraints. We further introduce that (1) every 
task/variable has a set of required capabilities, (2) every 
task dependency/constraint has two responsibilities: the 
supervisor and the subordinator, and (3) there is a set of 
heterogeneous robots that collectively possess all the 
required capabilities. For task dependency that links two 
task variables, the responsibility of the supervisor is to 
select a value for its variable and pass the value to the 
subordinator. The responsibility of the subordinator is to 
adjust the value of its variable so that it satisfies the 
constraint with the supervisor's value. 

Formally, the problem of distributed and dynamic task 
reallocation can be defined as a tuple (V, R, D, C, A), 
where V is a list of task/variables, R a list of required 
capabilities by the task/variables, D a list of value domains 
for the task/variables, C a set constraints, and A a set of 
robots with heterogeneous capabilities. The goal of this 
problem is to find an assignment A<=>(V,Q that is both 
complete and optimal. An assignment is complete if every 
task and every responsibility is assigned to a qualified 
robot and no single capability is assigned to more than one 
task simultaneously. A robot is qualified for a task if the 
robot possesses the necessary capabilities required by the 
task. An assignment is optimal if it enables a solution to 
the given global problem to be found with the minimal 
cost. The cost of a global solution can be measured in a 
user-specified way. For example, it could be the total 
number of messages sent between robots, or the sum of 
computational time consumed by the participating robots. 
In this paper, however, we will only consider the total 
number of messages for communication. 

To illustrate the above definitions, consider a task 
reallocation problem TR, extended fi-om CSP, as follows: 
V=[x„ x„ x,l R=[{c„ c,}, {c,}, {c,}], I>=[{1,2}, {2}, 
{1,2}], C=[{Xf^x,), (x^^x^], and A=[A,={c„ c^ cj, A^^Kc^, 
Cj,CfW. In this problem, the required capabilities for taskx, 
are {Cj,c^, taskx^ {c^}, taskx^ {c^}, respectively. The robot 
Aj has capabilities {Cj,C2, c^} and is qualified for x, and Xp 
and the robot A^ has {c^c^c^ and is qualified for x^ and x,. 
Without loss of generality, we can simplify the problem by 
assuming that each task requires a unique capability so that 
the capability requirements for tasks can be embedded in 
the task variables. For each task that requires more than 
one capability, such as x^ requires {Cj,c^, we create a new 
capability called c,^^ so that x^ can be handled by c^^^. With 
this convention, TR, can be simplified as: V=\x^, x^ xj, 
/?=[{c,44}' {c^}, {c,}], D=[{1,2}, {2}, {1,2}], C=\{x,*x;), 
(x^x^^ and A=[Aj={c,44, cj, Ai=^{Cp c,, cj]. Thus we can 
replace robots' capabilities by task variables as follows: 
R={{x,},{x,},{xM m&A={A,=[x„ x,], A^={Xp x,W. 

With the above definition, we can enumerate all 
possible task allocations for a given problem by matching 
the qualification of robots with task variables and task 
dependency constraints. In our current example, there are 
eight possible task allocations listed in Table  1.  For 
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example, in the solution O,, A,:(x,,jrj) indicates that the 
robot A, is assigned tasks x, and x^, and A^ix^) indicates 
that the robot A^ is assigned Xy The responsibility 
assignment [x,-^ x,] means that for the task dependency 
between x, and x,, the robot A, (who is assigned to x,) is the 
supervisor while A^ (who is assigned to jc,) is the 
subordinator. Similarly, for the task dependency between x^ 
and Xj, [x,-> xj indicates that A^ is the supervisor and A, is 
the subordinator. 

Table 1: All possible task allocations for TRi 

Task Assignment      Responsibility Assignment 
O, 
O, 
o. 
o. 
o. 
o. 
o. 
o. 

A,:(x„x,), A,:(x,) 
A,:(x.,x,).A,:(x,) 
A,:(x,.x,),A,:(x,) 
A,:(x„x,),A,:(x,) 
A.:(x,),A,:(x„x,) 
A,:(x.),A,:(x„x,) 
A.:(x.).A,:(x,.x,) 
A,:(x,),Aj:(Xj,x,) 

[x,-» X, -> x,1 
[x.-» X, <- x,1 
[x,<- X, -» x,1 
[X.'^ X, <- x,1 
[x.-» X, -» x,1 
[x,^ X, <- \^ 
[x.<- X, -> x,1 
[x,<- Xj ^ Xj] 

The above task allocations can be graphically 
represented in a Distributed Organizational Task Network 
(DOTN). In a DOTN, the nodes are the task variables with 
required capabilities, the edges are the task dependency 
constraints, and the direction of an edge represents the 
responsibilities of the involved robots in the corresponding 
task dependency constraint. A DOTN is complete and 
optimal if the robot assignment to the elements in the 
EKDTN (nodes and edge directions) is complete and 
optimal. To illustrate the representation of DOTN, Figure 
1(a), 1(b), and 1(c) shows three task allocations 
corresponding to O,, Oj, and O,, respectively. Note that O, 
and Oj have the same task assignments [A^:(x,^^)A2(Xj)], 
but different responsibility assignment for the dependency 
constrain [x^^x,]. In O,, Aj is the subordinator and A^ the 
supervisor, while in Oj, A, is the supervisor and A^ the 
subordinator. In Figure 1(c), O, has a totally different task 
assignment: A, is assigned to or,, and Aj to (Xj, Xj). 

Figure 1: DOTN examples for Oi, Oj, and Og. 

Intuitively speaking, the solution 08 is the optimal task 

allocation because it is most likely for the robots to find a 
coherent solution for the global problem faced by the 
organization. This is because the tasks x, and x^ are free 
from any dependency constraints so they are best to be 
assigned to different robots. Furthermore, for the only 
dependency constraint [xj^Xj] across the two robots, x^ has 
a more restricted domain than x,, so its assignee Aj should 
be given the responsibility of supervisor. In this simple 
illustrative example, the objective of task reallocation is to 
find this optimal solution O, during the process of solving 
the global DCS problem. 

3. Task Reallocation by Heuristic Search 

The above definition of task allocation implies that 
solving the problem requires a search in an enormous 
space for possible assignments between robots and DOTN 
elements (nodes and edge directions). This search can be 
done either exhaustively or heuristically. 

The basic idea for exhaustive search is quite simple. 
One can find the best task allocation by going through all 
possible task allocations and returning the one that has the 
best performance. This search is complete because it 
guarantees to find the optimal task allocation. But the time 
complexity of this search makes it impractical to use. 
When the environment is changed, the entire search 
process must be started over again. 

To find a practical solution for distributed and dynamic 
task reallocation, we may use local search approaches to 
find an approximation of the best task allocation. Local 
search proceeds by incrementally improving the current 
task allocation based on the feedback of solving the global 
problem. To do so, we have to answer two questions: how 
to modify a task allocation, and when to apply these 
modifications so that they result in improvement. By 
definition, a task allocation can be moidified by two 
actions: trade tasks among robots, and trade responsibilities 
among robots. We now discuss them in detail. 

Trading Tasks among Robots 
In a task allocation process, tasks with dependency 

constraints are partitioned into groups, and each group is 
then assigned to a qualified robot. In this context, we can 
classify a dependency constraint between two tasks as 
either remote (across robots) or local (within a robot). An 
optimal task allocation is the one that minimizes the 
remote dependencies between robots so that each robot can 
solve its own tasks in a relatively independent way. 

How do we measure the dependencies between two 
tasks or two robots? The most straightforward way is to 
simply count the number of dependency relationships 
between tasks or robots. This is a static estimation and the 
best task allocation based on this measurement can be 
accomplished by analyzing the role-graph at the outset and 
partition the roles into groups to minimize the total number 
of dependency relationships between groups. However, 
this static approach does not consider the likelihood how a 
dependency can be satisfied. Such likelihood would 
depend on how easy to find solutions for the tasks 
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involved, how wide the communication bandwidth is 
between robots, and many other facts. Such information is 
not available until the problem solving process starts. 

As a first attempt for dynamic task reallocation, we 
estimate the dependency between two tasks A and B by the 
number of messages exchanged between the tasks: 

dependency(A,B) = the_num_of_messages(A,B). 

When a task x is traded from robot A to robot B, some 
local dependencies of x may become remote, while some 
remote dependencies of x may become local. The purpose 
of such task trading is to reduce the total amount of remote 
dependencies among all robots. 

To illustrate this point, consider the task allocation in 
Figure 2, where five tasks t,, t^, t,, t^, and tj are allocated to 
three robots A, B, C, and the dependencies on the links are 
as shown. Assume that based on the qualification of the 
robots, only tj and tj can migrate from A to B or C. 

V    A 

Figure 2: Trading tasks in a task allocation. 

Given the above facts, the changes of remote 
dependencies caused by the four possible task trades can 
be computed as follows: 

Trade t^ from A to B: -6+3+2 = -1 
Trade t^ from A to C: 3+2 = 5 
Trade tj from A to B: +3 
Trade t, from A to C: -5 +3 = -2 
For example, when tj is moved from A to B, it 

eliminates a remote dependency of value 6, but introduces 
two new remote dependencies of value 2 and 3. Among 
these four possibilities, the trade t3 from A to C is the most 
profitable modification for the current task allocation. 

In general, we trade a task x from a robot A to another 
robot B if the total remote dependencies between x and 
tasks in B is higher than the total local dependencies of x in 
A. This trade of task will reduce the total remote 
dependencies in the entire task allocation. To facilitate this 
decision-making, each robot is required to record the 
number of messages sent and received on each task 
dependency. 

Trading Responsibilities among Robots 
Trading responsibilities between robots is another way 

to modify a task allocation. The basic idea is to switch the 
supervisor and subordinator responsibility whenever the 
subordinator cannot find any possible solution to its task. 
The motivation of this action is that by becoming a 
supervisor, a robot may have more freedom to choose 

solutions for its task, therefore more likely to find a global 
solution. 

In DOTN, this action switches the direction of an edge 
and alters the direction of information flow between roles. 
Such changes can affect the performance of an 
organization because it has been demonstrated in [8] that 
changes in the priority order among variables can influence 
the rate of problem solving in DCSP. Switching 
responsibilities is a special case of changing priorities. 

The simple protocol of switching responsibilities 
between two robots, however, is too limited to be effective 
and can run into deadlocks. Consider a situation where 
both the supervisor and the subordinator cannot find 
solutions to their tasks, then no matter how many times 
they switch responsibilities; the problem can never be 
solved because they are constrained by other neighbors. 

To overcome this problem, we extend the scope of 
trading responsibilities from two robots to the entire 
neighborhood. Inspired by the priority schema in [9], we 
assume that every task is assigned a global priority. If two 
tasks are linked by a dependency constraint, then the task 
with the higher priority is the supervisor. Whenever a robot 
fails to find a solution for its task, it will switch the priority 
of that task with a neighboring task that has the highest 
priority in the neighborhood. Difl'erent from the schema in 
[9], this protocol does not introduce any new priorities for 
the tasks yet it can avoid any loop creation in DOTN. 

To illustrate this protocol of trading responsibilities, 
assume that the tasks [t,,tj,t3,t4,t5] in Figure 2 have the 
priorities [1,2,3,4,5]. When t^ fails to find a solution, it will 
switch its priority with tj because t^ is the neighbor task 
that has the highest priority. Notice that after this switch, t^ 
becomes the supervisor of all its neighbors, which includes 
tj, t,, and t,. 

4. The SOLO Algorithm 
The process of task reallocation described above has 

been implemented as a new algorithm called SOLO, which 
is an extension of the Asynchronous Backtracking 
Algorithm [10] and the version that deals with multiple 
variables per agent [9]. Given a DCSP, the SOLO 
algorithm allows robots to reallocate the task variables 
assigned to them initially. The output of SOLO is a 
solution to the given DCS? and a near optimal task 
allocation among robots. 

Four types of messages are used. (1) An ok7 message is 
sent when a robot is proposing a new solution to its local 
task. When a robot M sends out an ok? message for a local 
task X., it also indicates if it is willing to give away 
{giveAway?^ the task to the receiver. (2) A nogood 
message is sent when a subordinator robot finds it is 
impossible to find a solution for a task to satisfy all 
neighboring supervisors. (3) An interested message is sent 
by a qualified robot as a reply to an ok? message to 
indicate the willingness to accept the offered task. (4) A 
release message is sent by a robot to transfer a local task 
to an interested receiver. Among all the "interested" 
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when received (ok?, (Aj, xj, dj, priority, giveAway?)) do 
add {Aj, xj, dj, priority) to robotView; 
it(giveAwayl & qualifedfor(jc/) & profitToAccept(;t/)) then 

send(interested, Ai, Aj, xj); 
when robotView and currentAssignments are inconsistent 

checkRobotVie w; 
end do; 

when received (nogood jcj ,nogood) do 
add nogood to the nogoodlAst 
when (xfe, dk, priority) is contained in the nogood 

where JC* is not in the neighbors do 
add xk to neighbors, 
add {Ak, xk, dk, prority) to robotView; end do; 

chedcRobotView; 
end do; 

when received (interested, Aj, xi) do 
if XJ is in the possessedVariablesLisl then 

delete xi from possessedVariablesList; 
send (release, (xi, di, priority)); end if 

end do; 

when received (release, (xi, di, priority)) do 
add xi to possessedVariablesList; 
annouce the new ownership of j«' to the neighbors; 

end do; 

procedure chedcRoliotView 
if robotView and currentAssignments are consistent then 

for each xi that has a new value d do 
for each robot Ak that has a constraint with xi do 
g/vMH'a)r?=CommCost(ArJ,Ait)>localCommCost(xO); 
send (ok?, (^4/, xi, d currentPriority(xi), giveAway?)); 

else select x^ from possessedVariablesList, which has the 
highest priority and violating some constraint 
with higher priority variables; 
if no value in D, is consistent with 

robotView and currentAssignments then 
record and communicate a nogood, i.e., the subset 

of robotView and currentAssignments where 
X, has no consistent value; 

when the obtained nogood is new do 
switch   the   priorities   between   x,   and   the 

inconsistent variable that has the highest priority in the nogood; 
Xj = d; where d e D,, and d minimizes the 

number of violations with lower priority variables; 
cfaeckRobotView; end do; 

elseX, = d; wherede D^anddisconsistent with 
robotView and currentAssignments and minimizes 
the number of violations with lower priority 
variables; 
dieckRobotView; 

end if; end if; 

Figure 3: The SOLO Algorithm 

receivers, the offering robot will select the one that has the 

highest reinote dependency with respect to the offered task. 
Since cotnmunication among robots are asynchronous, the 
offering robot cannot guarantee to wait for all interested 
parties so it is permissible to release the task to the first 
interested receiver. 

Figure 3 illustrates the procedures for receiving 
messages such as ok?, nogood, interested, and release, and 
for checking local robot views. The algorithm starts with 
an initial task allocation determined randomly. Each robot 
assigns values to its local variables, and sends ok? 
messages to all related subordinator robots. After that, 
robots wait and respond to incoming messages. When an 
ok? message about a variable x is received, the receiver 
robot A will update its local view and send back an 
interested message if it is qualified to possess x and also 
possessing x is profitable for A. When an interested 
message for a variable x is received, the receiver robot will 
relinquish the variable (by deleting x from its local variable 
list) and replies with a release message. The receiver of the 
release message will add the variable to it local variables 
list and announce the new ownership by a set of ok? 
messages. 

To illustrate the SOLO algorithm in detail, let us 
consider our TRl example again. We assume that the initial 
task allocation is Figure 1(a). Each robot conmiunicates 
these initial values via ok? messages. When A, sends an 
ok? message to A2 for x,'s new value, it also indicates the 
willingness to give x, away because x, has a higher remote 
dependency than its local dependency. When A^ receives 
this ok? message, it updates the robotView but is not 
interested in x, because the lack of qualification. After A^ 
assigns a new value 2 to its local variable x,, it sends an 
ok? message to A, (for A, is the subordinator of the 
constraint Xj^Xj). This time A, fails to find a consistent 
value 3Cj to satisfy the constraint of Xj^x,, so it performs the 
following actions. A, sends a nogood message {(x3=2)} to 
\, switches the priority value of Xj with X3, selects a new 
value 2 for x^, sends an ok? message to A^ to inform the 
priority switch and its willingness to give x^ away. At this 
point, the task allocation becomes Figure 1(b). In this new 
task allocation, Aj sends out two messages: an interested 
message to A, for taking Xj, and a nogood {(x,=l),(Xj=2)} 
message to A, because it fails to find a consistent value for 
Xj. After these messages, A, releases x^ to A^ and changes 
die value of x, to 2. At this point, all tasks are solved and 
the task allocation is Figure 1(c). 

5. Experimental Results 
We have applied the SOLO algorithm to a distributed 

3-color problem. Given n variables, we first generate a 
random 3-color problem with 2.7« links (to ensure the 
difficulty of the problems). We then generate a set of m 
robots by randomly partitioning the capabilities (variables) 
into m even subsets. If the n/m is not an integer, then the 
remaining capabilities are assigned to the last robot. To 
make sure that robots have overlapping capabilities, we 
then expend each robot's capabilities by adding extra p%, 
randomly selected different capabilities. Notice tfiat when 
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/7=0, every robot has unique capabilities and there is no 
room for trading tasks. If p=100, then all robots can trade 
all tasks. 

Table 2 lists the results of running SOLO with different 
number of variables (n), robots (m), and capability 
overlapping (p). Each data point in the table is the average 
for 50 randomly generated problem instances. The initial 
values of the variables in these trails are determined 
randomly. To show the effects of task trading, we have 
recorded the number remote and local messages, the cycles 
needed to solve the problem, and the number of task 
trading. 

Table 2: The effects of task trading 

nim p=0 p=30 p=60 p=90 

# of remote messages 

1(V4 119.0 79.3 68.1 62.0 
10/8 265.1 186.7 137.4 200.8 

20/8 1004.7 2394.5 1111.7 593.2 

20/12 5729.7 3652.9 3038.3 1132.6 

30/10 2584.0 2269.4 2490.3 2343.2 

30/20 5969.4 7007.3 4236.4 348.9 

50/10 2948.9 3152.1 3446.1 3310.4 

100/20 6041.7 5920.6 5766.5 5718.1 

nIm # of local messages 

10/4 29.8 19.1 17.6 21.6 

10/8 17.8 25.3 19.6 35.4 

20/8 142.2 333.3 189.6 89.6 
20/12 412.4 379.8 409.2 143.9 
30/10 269.4 239.6 264.7 257.1 
30/20 176.7 329.6 293.6 19.4 

50/10 324.5 353.0 396.4 395.4 

100/20 311.5 329.1 333.3 350.3 

nIm # of cycles for solving DCSP 

10/4 29.8 19.1 17.6 21.6 
10/8 5.8 5.8 4.1 8.2 

20/8 20.8 44.6 33.5 16.5 

20/12 47.0 47.0 60.2 21.2 

30/10 26.7 27.4 31.8 32.1 

30«0 21.3 32.4 37.6 3.7 
50/10 34.0 39.7 39.8 41.9 
100/20 22.8 24.7 26.1 27.0 

nIm # of task trading                    \ 

10/4 0.0 0.7 1.1 0.5 

10/8 0.0 0.0 2.5 2.0 

20/8 0.0 0.1 2.8 3.9 

20/12 0.0 3.7 5.0 4.9 
30/10 0.0 1.3 3.6 5.8 
30/20 0.0 7.0 8.0 6.6 

50/10 0.0 7.0 8.7 7.4 

100/20 0.0 7.2 9.9 10.8 

As we can see from the results, as the overlapping 
capability increases, more tasks are traded between robots, 
less communication is needed between robots, and the rate 
of converge is faster (less cycles). In general, when robots 
have choices for what they do, task reallocation allows 

them to solve the problem much more quickly than fixed 
task allocation. We notice that communication does not 
reduce monotonically with the capability overlapping. In 
the case m/n=20/8, we see an increase of communication at 
30% of overlapping, before it goes down again. Further 
investigation is required to determine the causes of this 
phenomenon. 

6. Conclusion 
This paper presents an approach to distributed and 

dynamic task reallocation in multi-robot systems. This 
problem is motivated by the fact that most critical 
information for organizational performance must be 
obtained during problem solving and static criteria for task 
allocation cannot take the dynamic information into 
account. The paper identifies two important heuristics for 
improving task reallocation and presents an initial 
implementation of the SOLO algorithm. 

The research reported here also suggests a number of 
future research directions in task reallocation. In particular, 
more factors other than the number of messages must be 
considered to better estimate the dependencies between 
tasks and robots. Applications of the approach to real- 
world problems that involve robots are also necessary. An 
even more challenging problem is to deal with the changes 
in the environment where solutions to tasks are non- 
stationary. 
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Abstract 

In this paper we investigate the use of sensors 
in self-reconfigurable robots. We review several 
physically realized self-reconfigurable robots and 
conclude that little attention has been paid to the 
use of sensors. This is unfortunate since sensors 
can provide essential feedback that can be used 
to guide self-reconfiguration and control. In the 
systems that do use sensor feedback, the feed- 
back is used locally on each module. However 
we identify a need in some situations to use sen- 
sor feedback globally. We therefore propose an 
approach where raw sensor values are abstracted 
and propagated to all modules. The sensor values 
are abstracted differently depending on the posi- 
tion of the producing sensor on the robot. We 
combine this approach with role based control, a 
control method for self-reconfigurable robots that 
we have developed earlier. We demonstrate that 
by combing these two approaches it is possible to 
make a self-reconfigurable robot consisting of six 
modules walk and avoid obstacles. However the 
reaction time of the robot is slow and therefore 
we discus possible ways of reducing the reaction 
time. 

1    Introduction 

In this paper we focus on self-reconfigurable robots built 
fi:om a possibly large number of physically independent 
modules. The modules of these robots are able to con- 
nect and disconnect autonomously and can have sensors, 
actuators, a processor, a power source, and a conunimi- 
cation system. 

Self-reconfigurable robots have several advantages 
over traditional fixed shaped robots. 1) The modules 
can connect in many ways making it possible for the 
same robotic system to solve a range of tasks. This is 
useful in scenarios where it is undesirable to build a spe- 
cial purpose robot for each task. 2) Self-reconfigurable 
robots can adapt to the enviromnent and change shape 

as needed. This could for instance be useful in a retrieval 
scenario where the robot has to snake its way through the 
rubble of a collapsed building and at some point change 
shape to recover an object firom the rubble. 3) Since the 
robot is build from many independent modules it can be 
robust to module failures. If one module is defect it can 
be ejected from the system and the robot can still per- 
form its task. 4) Self-reconfigurable robots are built from 
many identical modules. These modules can be mass 
produced and therefore the cost can be kept low despite 
their complexity. The advantages of self-reconfigurable 
robots can be summarized as: versatility, adaptability, 
robustness, and cheap production comp2ired to the com- 
plexity and versatility of the resulting robot. 

2    Research Challenges 

In order to realize the potential of self-reconfigurable 
robots a number of research challenges have to met. 
There are interesting challenges to be met both in hard- 
ware and software. 

2.1   Hardware Issues 

In hardware some of the fundamental questions are: 
Does each module need computation power on-board? 
Where from do the modules get their energy? What 
kind of sensors are needed? What kind of communi- 
cation system does the modules need? Several systems 
have been build to try to answer these questions and 
their properties are summarized in Table 1. 

In Table 1 the systems are approximately sorted in 
order of increasing autonomy. It can be can seen from 
the table that very few of these systems are fully au- 
tonomous. This is not encouraging, because in order to 
realize the potential of self-reconfigiu*able robots it is im- 
portant that they are autonomous. One important step 
toward achieving autonomy is to understand how to use 
sensors to make the robot able to sense and react to 
its environment. In this paper we take one small step 
toward understanding this. 
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Robot 

1 o 
JO 

o 
p 
PH o 

1 a o 

p. sensors used for Communication Reference 

JHU Hexagonal yes^ no n/a n/a (Pamecha et al., 1996) 
JHU Rectangular yes no n/a n/a (Pamecha et al., 1996) 
MEL 3d unit no no joint position serial w. host (Murata et al., 1998) 
RIKEN vertical no yes none radio w. host (Hosokawa et al., 1998) 
PolyPod yes no force/torque 

joint position 
bus (Yim, 1994) 

Xerox PARC PolyBot yes no joint position 
docking aid 

CANbus (Yim et al, 2000) 

MEL 2000 yes^ no none serial bus with IDs^ (Murata et al., 2000) 
MEL fractum yes no none inter-unit optical (Murata et al., 1994) 
Dartmouth molecule yes^ no not reported serial w. host (Kotay et al., 1998) 

CMU ICES-cube yes^ yes joint position serial w. host (Unsal and Khosla, 2000) 
Dartmouth crystalline yes yes joint position sjTic. signal f. host (Rus and Vona, 2000) 
use CONRO yes yes docking aid inter-imit optical (Shen et al., 2000a) 
CEBOT yes yes docking & 

obst. avoid. 
on-board (Fukuda and Nakagawa, 1990) 

Table 1: Overview of physically realized self-configurable robots. 

2.2   Software Issues 

There are two main categories of approaches to the con- 
trol of self-reconfigurable robot: centralized control and 
distributed control. 

In centralized control a central host dictates the ac- 
tions of each module (Castano et al., 2000b). The ad- 
vantage of this approach is that it is potentially eas- 
ier for a controller to handle the complexity of the sys- 
tem when global knowledge is available. The disadvan- 
tage is that when the number of modules increase the 
host becomes the bottleneck. This scalability problem 
can be reduced by having modules do low-level con- 
trol and having the central host coordinate the actions 
of the modules (Yim, 1994). The problem can also be 
side stepped by having a reconfiguration sequence com- 
puted off-line and afterward downloaded into the mod- 
ules (Rus and Vona, 2001). The central host in this sit- 
uation works as a conductor telling the modules how 
far they are in their action sequences. Calculating the 
reconfiguration sequence off-line unfortimately has the 
disadvantage that no adaptation can be made when the 
system is online. Furthermore systems based on central- 
ized control are not robust since they all rely on a single 
host to function. 

In order to address these problems distributed control 
has been used. Two classes of distributed control sys- 
tems exist: synchronous and asynchronous distributed 

^but controlled off-board. 
^local communication imder development. 

control systems. In synchronous control the strict con- 
trol of the system is maintained, but the problem of 
robustness is removed. In synchronous control a dis- 
tributed sjmchronization algorithm can be used to syn- 
chronize the actions of the modules connected in a low 
bandwidth network. Basically the synchronization sig- 
nal that before came from a central host now is produced 
using a distributed synchronization algorithm. The hor- 
mone based algorithms developed by Shen, Salemi, and 
others are examples of this approach (Shen et al., 2000a, 
Shen et al., 2000b, Salemi et al., 2001). This solves the 
problem of robustness: there is no central host and the 
system still works even though a module is taken out. 
However insisting that all the modules should be strictly 
synchronized has a cost in terms of efficiency. 

Another approach to distributed control is asyn- 
chronous distributed control. In synchronous control the 
modules were considered part of the whole. In asyn- 
chronous control each module is considered the whole. 
A module can be combined with more modules to make 
a bigger whole, but it in itself represents the whole. 
In this approach the asynchronous nature of the sys- 
tem is embraced and the idea of having a strictly con- 
trolled system is abandoned. The autonomy of each 
module is increased and the focus is on the local in- 
teraction between modules (Murata et al., 1994). The 
problem in asynchronous control is how to get coherent 
global behavior to emerge out of local interactions be- 
tween many modules. The advantage of these systems 
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Figure 1: A CONRO module. 

is that since all information is handled locally the sys- 
tems scale. These methods take their inspiration from 
multi-agent systems (Bojinov et al., 2000b), and cellular 
automata (Hosokawa et al., 1998, Butler et al., 2001). 
Their similarities to minimalist collective robotics are 
also apparent see for instance (Beckers et al., 1994, 
Beckers et al., 2000, St0y, 2001). 

In ro/e hasei control which we will present in detail in 
Section 5 we combine some of the ideas from synchronous 
and asynchronous control. We acknowledge the need for 
each module to only use local information to insure scal- 
ability and robustness. However in situations where the 
modules are cooperating tightly, for instance to produce 
a locomotion gait, there is also a need to keep the mod- 
ules synchronized. In role based control synchronization 
is achieved by having modules synchronize with neigh- 
bors from time to time. Over time this leads the entire 
system to be synchronized. This way the synchroniza- 
tion mechanism is decoupled from the control of the indi- 
vidual module and a robust, scalable, and sjrnchrohized 
system is the result. 

Sensors 
Robots 

and      Self-Reconfigurable 

In research on sensor fusion there has been some 
work on how to combine and abstract sensor val- 
ues into logical (Henderson and Shilcrat, 1984) and vir- 
tual sensors (Rowland and Nicholls, 1989). This work 
has been further extended with a commanding sen- 
sor type (Dekhil et al., 1996). The focus was on un- 
proving fault-tolerance of sensor systems and aiding 
development by making the sensor systems modular 
(Hardy and Ahmad, 1999). These ideas are relevant to 
the use of sensors in self-reconfigurable robots. However 
using sensors in self-reconfigurable robots is different be- 
cause of the imique features of self-reconfigurable robots. 

In a self-reconfigurable robot it can not be assimied 
that the position of the sensor is fixed. It can be moved 
through reconfiguration or maybe just by movements of 
the modules. This means that we need to imderstand 
how to extract meaningful sensor data from a network 
of sensors connected in time-varying ways. The previ- 
ously proposed approaches also mainly deal with one 
consumer of the sensor date. If distributed control is em- 
ployed there are many controllers that act on the sensor 
data. This means that system should be able to deal 
with inconsistent sensor data. 

In distributed systems the problem of many deci- 
sion makers can be dealt with in two ways. One 
way is to consider the modules independent and al- 
ways handle sensor information locally. That is, on 
the module that receives the sensor input. Butler et 
al (Butler et al., 2001) have in simulation made a sys- 
tem where each module is a cellular automaton that re- 
acts to its local configuration and surroimding obsta- 
cles. Using seven rules the modules are able to role over 
and across each other to produce "water-flow" like lo- 
comotion through an environment with obstacles. A 
similar idea was explored earUer on a real robot by 
Hosokawa et al (Hosokawa et al., 1998). Another ap- 
proach explored by Bojinov et al (Bojinov et al., 2000a, 
Bojinov et al., 2000b) is to have the structure of the 
robot grow from seed modules. The growth is accom- 
plished by having the seed module attract spare modules 
to a specific position with respect to the seed by using 
a virtual scent. When a spare module reaches that po- 
sition the old seed module stops being a seed and the 
newly arrived module becomes the seed. The behavior 
of the seed module is controlled based on events it can 
sense in the environment. In these approaches the mod- 
ules are decoupled in the sense that the modules only 
interact through stigmergy (Beckers et al., 1994). 

In some S3rstems the modules are highly coupled and 
sensor information can not always be handled locally: a 
sensor input might have effects in other modules than in 
the one m which it origmated. This rmses a fundamental 
questions which is the mjun focus of this paper: how do 
we distribute sensor information in order for it to arrive 
at the modules that need it? In this paper we present a 
system where sensor information is abstracted and prop- 
agated to all modules in the sjrstems. Each module in 
the system then independently decides what action to 
take based on these propagated sensor values. Oiu- use 
of sensors is inspired by the use of sensors in behavior 
based robotics (Arkm, 1998, Matari6,1997) where sen- 
sors are used directly to control motors and not to build 
a geometrical model. We combine this communication 
system with role based control which we have devel- 
oped earUer for the control of self-reconfigurable robots 
(St0y et al., 2002a, St0y et al., 2002b). 
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4 The CONRO module 

Before describing this approach in more detail we 
will describe the CONRO self-reconfigurable robot. 
The CONRO modules were developed at University 
of Southern California's Information Sciences Institute 
(Castano et al., 2000a, Khoshnevis et al., 2001) (see fig- 
ure 1). The modules are roughly shaped as rectangu- 
lar boxes measuring 10cm x 4.5cm x 4.5cm and weigh 
lOOgrams. The modules have a female connector lo- 
cated at one end facing south and three male connectors 
located at the other end facing east, west, and north. 
Each connector has an infra-red transmitter and receiver 
used for local conununication and sensing. The mod- 
ules have two controllable degrees of freedom: pitch (up 
and down) and yaw (side to side). Processing is taken 
care of by an onboard Basic Stamp 2 processor. The 
modules have onboard batteries, but these do not sup- 
ply enough power for the experiments reported here and 
therefore the modules are powered through cables. For 
the experiments reported here we also equipped the mod- 
ules with flex sensors. The flex sensors are mounted on 
small circuit boards and Velcro is used to attach them 
to the modules. This mounting strategy is not very ro- 
bust, but it is very flexible making it easy to experiment 
with different sensor morphologies. The flex sensors are 
11cm long. Their resistance increase as they are bent 
and can therefore be used for rich tactile sensing. Re- 
fer to http://www.isi.edu/conro for more details and for 
videos of the experiments reported later in this paper. 

5 Short   Introduction   to   Role   Based 
Control 

In previous work we have introduced role based control. 
Role based control is a simple minimalist approach to 
the control of self-reconfigurable robots. We have shown 
earlier how this control method can be applied to chain 
and tree configurations to implement caterpillar like lo- 
comotion, locomotion similar to that of a sidewinding 
snake, and rolling track locomotion (St0y et al., 2002a). 
We have also used the method to make the CONRO 
robot configured as a hexapod and a quadruped robot 
walk (St0y et al., 2002b). Here we summarize role based 
control. 

5.1   A Role 

A role r consists of three components. The first com- 
ponent is a function A{t) that specifies the joint angles 
of a module given an integer te[0 : T]. Where T is the 
period of the motion and the second component that 
needs to be specified. The third component is a set of 
delays D. A delay dicD specifies the delay between the 
child connected to connector i and the parent. That 
is, if the parent is at step tparent = h the child is at 

tchud = (T + ti — di) modulusT. Below is some exam- 
ples of roles used in the quadruped robot shown in Figiire 
4. The spine modules play the spine role: 

A{t, spine) 

deast 

"'South 

"■west 

T 

The legs play the forward role below or the backward 
role where t is replaced by 27r-t giving the same motion, 
but in the opposite direction. 

f pitch{t) 
\   yaw{t) 

=   0° 
=   25°cos(^<-l-7r) ^^^ 

T 
4 (2) 

2T 
4 (3) 

3T 
4 (4) 

180 (5) 

A{t, forward)    =    < pitch{t) 
yaw{t) 

T   =   180 

5.2   Playing a Role 

35°cos(f^i)-55° 
40°sin(^i)        ^^^ 

(7) 

The algorithm that we now will describe is used to make 
a module play a role. However first some assumptions 
need to be made: a parent connector is specified ajid 
the remaining connectors are considered child connec- 
tors, connections can only be made between a parent 
connector and a child connector. Furthermore we as- 
sume that there are no loops in the configuration. These 
assumptions limit the configurations the algorithm can 
handle to tree configurations. 

The algorithm has two components. One component 
makes sure that the actions are executed as specified 
in the role definition. This component also is responsi- 
ble for synchronization with neighboring modules. The 
second component is discovering what role the module 
should play in case it can play more than one role. What 
role to play is discovered based on information propa- 
gated down from the parent and the local configiu'ation. 

The role playing component is visualized in Figure 2. 
The algorithm starts by setting t = 0 and continues to 
the main loop. Here the algorithm first checks if t is 
equal to the delay specified for each connector. In case 
t equals one of these delays dj a signal is send through 
the corresponding child connector i. If the module has 
received a signal from its parent, t is reset. After that 
the joints are moved to the position described by A{t). 
Finally t is incremented unless a period has been com- 
pleted in which case t is reset and another iteration of 
the loop is initiated. 

In some situations it is desirable for a module to be 
able to play different roles depending on its location in 
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Figure 2: Visualization of the role playing part of the algo- 
rithm. See section 5.2 for an explanation. 

the configuration tree. This is taken care of by the role 
selection component of the algorithm. The role can be 
selected based on the local configuration. Therefore ev- 
ery time a signal has successfully been sent through a 
child connector meaning that a child module is connected 
to that connector there is a check to see if the role should 
be changed because of that. In the basic algorithm the 
parent signaled the children to keep them synchronized 
the parent now sends a message which is a function of 
the parents role and the connector to which the child is 
connected. These two algorithmic components combined 
are shown in pseudo code in figure 3. 

We have used this algorithm to make the CONRO self- 
reconfigurable robot walk. In the walker two modules are 
connected to form a spine. One module is connected on 
each side of the spine modules (see Figure 4). In this 
configiu-ation the modules can play three different roles: 
east leg, west leg, and spine. A modules decide which 
role to play using the following rules: if communication 
to the sides (to the legs) is successful the module plays 
the spine role. It plays the role of a west leg if its parent is 
a spine module and it received the synchronization mes- 

r ■ <start role> 
t = 0 
while(l) 

if (t«d(r)_l) then 
<8end message M(r,l) to child connector 1> 
<update r> 

endlf 

if (t"d(r)_n) then 
<send message H(r,n) to child connector n> 
<update r> 

endif 

if <message m received from parent connector> then 
t«0 
<update r based on m> 

endif 

<perform action A(r,t)> 
t - (t+1)  modulus T(r) 

endwhile 

Figtu-e 3: The algorithm used to play multiple roles. Refer 
to section 5.2 for further explanation. 

sage through the west connector of the parent module. 
A module plays east leg if the synchronization message 
was send through the east connector. 

Role based control is an example of an synchronous 
control method that does not insist on all the modules 
being synchronized at each step, but achieves this over 
time. This makes a role based system like the walker 
efiicient because the modules work independently most 
of the time and only occasionally share information and 
synchronization information with neighboring modules. 
In this system all modules run identical programs and 
therefore modules can be interchanged and switch roles 
accordingly resulting in a very robust system. For more 
information on this system and role based control refer 
to (St0y et al., 2002b). 

We have now summarized how role based control can 
be used to make the CONRO self-reconfigurable robot 
walk. However the system is open-looped in the sense 
that no sensor input firom the environment is used in the 
control. Therefore we want to extend role based control 
to include sensor feedback. This is the subject of the 
following sections. 

6    Role Based Control using Propagated 
Sensor Information 

The CONRO self-reconfigurable robot is now configured 
into a quadruped robot as shown in Figure 4. Two flex 
sensors are attached to the front spine module and one 
is attached to each of the front legs. We now want to 
use feedback from these sensors to make the robot steer 
away from obstacles.  In general the direction of loco- 
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Figure 4: The CONRO robot in a walker configuration. The 
spine is made from two modules and the l^;s are made from 
one module each. 
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Figmre 5: This figure shows how sensor values are propagated 
north from one spine module to the next. The south module 
(bottom) sums up the variables in the gray box and sends the 
sum to the north module (top). The north module receives 
this sum and write it in the variable indicated by the arrow. 

motion can be changed in two ways: the motion of the 
legs can be biased so legs on the side pointing away from 
the obstacle take shorter steps and those on the other 
take longer steps. This approach will enable the robot 
to make soft turns away from obstacles. An alternative 
is to have legs on the side pointing away from the obsta- 
cle to move backwards and thus producing a tiumng on 
the spot motion. We found in initial experiments that 
the sensor based bias of the locomotion pattern does not 
produce a sharp enough turn to avoid obstacles. There- 
fore we decided to implement roles that make it possible 
for the robot to turn on the spot. 

The goal is to make the quadruped robot turn on the 
spot away from an obstacle detected using one of the four 
flex sensors. Below we describe how this is achieved. A 
module has up to two flex sensors mounted: the front 
legs have one each, the front spine module has two, and 
the rest zero. The modules continuously sample these 
sensors and write the analog value into a local variable. 
What variable dependents on the position of the sensor. 
If the flex sensor is pointing toward the east the sensor 
value is written in a variable named local east (LE) and if 
it points west in local west (LW). If there are no sensors 
attached these variables contain zero. Each module has 
an additional six variables: northeast (NE), northwest 
(NW), east (E), west (W), southeast (SE), southwest 
(SW). These variables represent the sensor activity in 
the direction indicated by the names. For instance if all 
the west variables including local west are added up it 
will give the sum of the sensor activity on the west side 
of the robot. The same is true for the east values. 

We wUl now describe how the sensor values are propa- 
gated in the system to produce the contents of the vari- 
ables as it is described informally above. When a spine 
module sends sensor information to a module connected 
to its north connector it works as follows. The south 
module adds up the variables west, southwest, and lo- 
cal west and sends the sum to the north module. The 
simi is received by the north module and is written in 
the southwest variable. Note that this satisfy the invari- 
ant that the southwest variable of the north module now 
contains the stun of the sensor activity to the southwest. 
This mechanism is summarized m figure 5. At the same 
time the sum of the east variables is propagated and 
written in the southeast variable of the north module. 

This mechanism will simi up the sensor inputs all 
along the spine and the northern most module will have 
information about the sensor activity to the southeast 
and southwest. However we want all the modules to have 
information of sensor activity in all directions therefore 
a similar, but independent mechanism is also propagat- 
ing sensor activity southward. These two propagation 
mechanisms are summarized in figure 6. 

All the spine modules now have information about sen- 
sor activity along the spine. For instance the modules 
can siun the northwest, local west, and southwest vari- 
ables to find the sensor activity on the west side of the 
robot. This is not enough in our situation, because there 
are also two legs attached to the spine modules. There- 
fore sensor information shotdd also be propagated from 
and to them. In our setup an east leg can only have one 
piece of sensor information that the spine does not have: 
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Figure 6: This figure shows how sensor values are exchanged 
between two spine modules. The modules sum the variables 
in the gray boxes and send these two values to the other 
module. The receiving module then writes these values in 
the variables as indicated by the arrows. 

Figure 7: This figure show how sensor values are exchanged 
between a spine module (left) and an east leg module (right). 
The modules adds up the numbers in the gray boxes and 
send these values to the other module. The receiving module 
then write these values in the variables as as indicated by the 
arrows. 

the value of the sensor connected to that leg. Therefore 
the local east value is propagated from the leg to the 
spine. The leg on the other hand receives the sum of 
all the sensor activity on the west side of the robot and 
writes that in the west variable. The sum of the variables 
northeast, local east, and southeast of the spine is writ- 
ten in the east variable of the leg. This is summarized 
in figure 7. 

In role based control sjoichronlzation information from 
the parent module is sent to child modules each period 
of locomotion. The sensor information is also exchanged 
at this time as described above. How the sensor infor- 
mation is exchanged depends on what role the module 
plays. This is decided by the role playing algorithm. 
Therefore modules can still be exchanged and the sys- 
tem will continue to function if the sensors are plami 
correctly. 

All the modules now have access to global sensor in- 
formation and can make their decisions based on this 
information. In order to make a decision we sum the 
variables for the west and east side of the robot to have 
a measure of the activity on each side of the robot. A 
leg then decides to move backward if the sensor activity 
on the other side of the robot is above a small thresh- 
old and higher than the sensor activity on the leg's side. 
Otherwise it will move forward. 

7    Results 

First we will note some general properties of the system. 
One step of the robot corresponcfing to one period of 
locomotion takes two seconds. The step length is 15cm. 
Note that a step is quite long compared to the length 
of a module (10cm). The long steps are achieved by 
actively usmg the spine to make the steps longer. The 
robot achieves a speed of 7.5cm/second. 

In four separate experiments the robot was placed so it 
approached an obstacle from four different angles. These 
experiments were videotaped using an overhead camera. 
We then manually analyzed the tape and for every two 
seconds recorded the position of the front end of the 
robot, the rear end, and whether a flex sensor was touch- 
ing the obstacle. The results of this analysis can be seen 
in Figure 8. 

The sensor values are exchanged when modules syn- 
chronize. We know the spine synchronizes with the east 
leg at r/4, the spine module to the south at 2T/4, and 
the west leg at ZT/A. We can use this information to 
calculate upper and lower bounds on communication de- 
lays. In the worst case where the sensor change happens 
just after synchronization it takes 2 periods to get sensor 
information from a front leg to the rear leg on the other 
side. In the best case where the sensor change happens 
just before synchronization it takes 1 period. This means 
that the whole system has a reaction time between two 
and four seconds or a reaction distance of 15cm to 30cm. 
Note that the reaction time is much better for the front 
legs. We can see these slow reaction times in Figure 8. 
The robot can only successfully avoid the obstacle when 
it approaches at an angle. In trial nimiber four where the 
robot does not have time to react it bumps into the ob- 
stacle. This also explains why we decided to implement 
the turning on the spot behavior. 

8    Discussion 

If we look at how our approach can be used in general. 
We note that there are two things that make out system 
work. 1) The sensor data is abstracted based on the 
sensors position in a way that is useful for the receiving 
modules. 2) The abstracted sensor values are propagated 
at a constant slow rate to all modules. 
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Figure 8: These figures show the robot approaching an obstacle, turning on the spot, and moving away. The arrows represent 
the positions of the front end and rear end of the robot recorded every 2seconds. The direction of the arrow shows the direction 
of movement. A soUd arrow indicate that a flex sensor was triggered in that time step. A dashed that none were triggered. 

In order to keep the amount of communication man- 
ageable we abstract sensor values to maintain an esti- 
mate in each module of the sensor activity to the left 
and right of the robot. It is possible for all the modules 
to agree on left and right, because of the properties of the 
CONRO hardware. The modules can only be connected 
in a tree structure (with one loop) and be connected in 
four ways and therefore the transformation of direction 
from module to module is easy. In general it seems to 
be important to have some relative position information 
about the sensor with respect to the acting module. This 
means that in systems where the relative position of two 
connected modules can be foimd it is possible to abstract 
the sensor information in a useful way. This is also what 
makes this approach different from previous work on sen- 
sor fusion. The position of the sensor is variable and this 
is in our case handled by the abstraction mechanism. 

Sensor values flow around in our system at a constant 
slow rate. This rate could be increased significantly to 
reduce the reaction time. The problem of doing this is 
that our modules have limited resources and therefore if 
time is spent on conmiunication less time can be spent 

on control of the motors resulting in a decrease in speed. 
Therefore in order to decrease the reaction time of the 
system without sacrificing speed we need to use less com- 
munication and achieve a shorter reaction time at the 
same time. One solution would be to have the module 
monitor a sensor ajid if it goes above a certain threshold 
it can be propagated. When the sensor later drops below 
the threshold another message can be propagated. This 
might improve the response time of the system, because 
when communication takes place only when it is needed 
it can be made efficient. 

Another orthogonal way to decrease the amount of 
communication would be to only propagate sensor in- 
formation to the modules that need it. For instance 
in the walker sensor information from one side could 
be propagated to the other side. In this way the 
sensors on the left control the legs on the right and 
the other way around. In general directed diffusion 
(Intanagonwiwat et al., 2000) could be used for this. In 
directed diffusion information is propagated from the 
producer to the consmner through networks with a time 
varying configuration.  In this framework it is possible 
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for the consumer to show his interest in a specific kind 
of data and have that routed to it from the producer. 

9    Summary 

In a self-reconfigurable robot sensors can be used in two 
ways. One way is to use the sensor information locally: 
sensors can be used to bias the motions of modules to 
produce the desued global behavior. The advantage of 
this is efficiency since the sensor values do not need to 
be communicated an)rwhere. 

In some situations it is not possible to handle all sen- 
sor information locally. Therefore another way to handle 
sensor information has been presented. We have exper- 
imented with an approach where sensor information is 
abstracted based on the sensors position on the robot. 
This abstracted sensor mformation then flows from the 
modules that produce the information to all the mod- 
ules of the system. An important aspect of this system is 
that the acting modules have abstract information about 
the position where the sensor value originated. We have 
shown that by combining this communication mecha- 
nism with role based control we were able to make a 
six module self-reconfigurable robot walk and avoid an 
obstacle. 
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ABSTRACT 
In this paper we present role based control which is a multi- 
agent based control algorithm for self-reconfigurable robots. 
We use role based control to implement quadruped and 
hexapod gaits in a real self-reconfigurable robot made from 
up to nine independent autonomous modules. We show that 
this implementation scales and argue that it is minimal, ro- 
bust to module failures, to loss of communication signals, 
and to interchange of modules. 

In role based control all modules of the robot run iden- 
tical programs, but may play different roles. The modules 
decide what role to play based on their local configuration 
and information propagated down to them through the con- 
figuration tree. A role consists of a cyclic motion, the period 
of this motion, and a set of delays. The delays specify the 
phase delay of the cyclic motions of the child modules com- 
pared to the parent. These delays are used to coordinate 
the motions of the individual module to obtain a coordi- 
nated global behavior. 

Categories and Subject Descriptors 
1.2.11 [Artificial Intelligence]: Distributed Artificial In- 
telligence—Multiagent systems, coherence and coordination; 
1.2.9 [Artificial Intelligence]: Robotics—Autonomous ve- 
hicles 

General Terms 
Algorithms, Experimentation 

1.   INTRODUCTION 
Reconfigurable robots are robots made fi-om a possibly 

large number of independent modules that are connected to 
form a robot. If the modules fi-om which the reconfigurable 
robot is built are able to connect and disconnect without 
human intervention the robot is a self-reconfigiu-able robot. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
lepublish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
AAMASm July 15-19,2002, Bologna, Italy. 
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00. 

An example of a self-reconfigurable robot is the CONRO 
robot. A module of the CONRO system is shown in Figure 
1. Examples of other physically realized self-reconfigurable 
robots can be found in [4, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20]. 

Several potential advantages of self-reconfigurable robots 
over traditional robots have been pointed out in literature: 

• Versatility. The modules can be combined in dif- 
ferent ways making the same robotic system able to 
perform a wide range of tasks [8, 15]. 

• Adaptability. While the self-reconfigurable robot 
performs its task it can change its physical shape to 
adapt to changes in the environment [13]. 

• Robustness. Self-reconfigurable robots are made firom 
many identical modules and therefore if a module fails 
it can be replaced by another [7, 19, 15]. 

• Cheap production. When the final design for the 
basic module has been obtained it can be mass pro- 
duced and thereby keep the cost of the individual mod- 
ule low compared to its complexity. [7, 8, 19]. 

Self-reconfigurable robots can solve the same tasks as tra- 
ditional robots, but as Yim et al [19] point out, in applica- 
tions where the task and environment are given a priori it is 
often cheaper to build a special purpose robot. Therefore, 
the applications best suited for self-reconfigurable robots are 
applications where some leverage can be gained fi-om the 
speciail abilities of self-reconfigurable robots. 

The versatility of these robots make them suitable in sce- 
narios where the robots have to handle a range of tasks. The 
robots can also handle tasks in unknown or dynamic envi- 
ronments, because they are able to adapt to these environ- 
ment. In tasks where robustness is of importance it might be 
desirable to use self-reconfigurable robots. Even though real 
applications for self-reconfigurable robots still are to be seen, 
a number of specific applications have been envisioned [13, 
8, 19]: fire fighting, search and rescue after an earthquake, 
battlefield recormmssance, planetary exploration, tmdersea 
mining, and space structure building. Other possible appli- 
cations include entertainment and service rolxjtics. 

The potential of self-reconfigurable robots can be realized 
if several challenges in terms of hardware and software can 
be met. In this work we focus on one of the challenges in 
software: how do we make a large number of connected mod- 
ules perform a coordinated global behavior? Specifically we 
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address how to design algorithms that will meike it possible 
for self-reconfigurable robots to locomote efficiently. In or- 
der for a locomotion algorithm to be useful it has to preserve 
the special properties of these robots. From the advantages 
and applications mentioned above we can extract a num- 
ber of guidelines for the design of such a control algorithm. 
The algorithm should be distributed to avoid having a single 
point of failure. The performance of the algorithm should 
scale with an increased number of modules. It has to be 
robust to reconfiguration, because reconfiguration is a fun- 
damental capability of self-reconfigurable robots. Finally, 
it is desirable to have homogeneous software running on all 
the modules, because it makes it possible for any module to 
take over if another one fails. 

It is an open question if a top-down or a bottom-up ap- 
proach gives the best result. We find that it is difficult 
to design the system at a global level and then later try 
to distribute it, because often properties of the hardware 
are ignored and a slow robotic sj^stem might be the result. 
Therefore, we use a bottom-up approach where the single 
module is the basic unit of design. That is, we move firom 
a global design perspective to a bottom-up one where the 
important design element is the individual module and its 
interactions with its neighbors. The global behavior of the 
system then emerges from the local interaction between in- 
dividual modules. This way each module plays the role of 
an agent in a multiagent system. A similar approach is also 
used by Bojinov et al [1, 2]. 

2.   RELATED WORK 
In the related work presented here we focus on control 

algorithms for locomotion of self-reconfigurable robots. 
Yim et aJ [18, 19] demonstrate among other types of lo- 

comotion a four-legged spider like type of locomotion. In 
their system each module has a gait control table where 
each column represents the actions performed by one mod- 
ule. Motion is then obtain by having a master synchronizing 
the transition from one row to the next. The problem with 
this approach is the need for a central controller, since it 
gives the system a single point of failure. If there is no mas- 
ter it is suggested that the modules can be assumed to be 
Bjrnchronized in time and each module can execute its col- 
umn of actions open-loop. However, since all the modules 
are autonomous it is a questionable assumption to assimie 
that all the modules are and can stay synchronized. In or- 
der to use the gait control table each module needs to know 
what column it has to execute. This means that the mod- 
ules need IDs. Furthermore, if the configuration changes or 
the number of modules changes the gait control table has to 
be rewritten. 

Shen and Salemi propose to use artificial hormones to syn- 
chronize the modules to achieve consistent global locomo- 
tion. In earlier versions of the system a hormone is propa- 
gated through the self-reconfigurable system to achieve syn- 
chronization [13]. In later work the hormone is also propa- 
gated backw£irds making all modules synchronized before a 
new action is initiated [14, 12]. This synchronization takes 
time 0{n) where n is the number of modtiles. This slows 
down the system considerably, because it has to be done 
before each action. Also, the entire system stops working if 
one hormone is lost. This can easUy happen due to unre- 
liable communication, a module disconnecting itself before 
a response can be given, or a module faUure. In fact, the 

Figure 1: A CONRO module. 

system has n-points of failure which is not desirable. The 
earlier version is better in this sense, but still performance 
remains low because a synchronization hormone is sent be- 
fore each action. 

In our system all modules repeatedly go through a cyclic 
sequence of joint angles describing a motion. This sequence 
could come from a colunm in a gait control table, but in our 
implementation the joint angles are calculated using a cyclic 
function. Every time a module reaches a specified position 
p in the cycle a message is sent through a specified child 
connector. If the signal is received the child module resets 
its position in its cycle making it delayed p compared to the 
parent. This way the actions of the individual module are 
decoupled from the synchronization mechanism resulting in 
a faster and more reliable system. Furthermore, there is 
no need to make changes to the algorithm if the number of 
modules changes. 

3.   ROLE BASED CONTROL 
In our approa<:h we acknowledge the need for each module 

to be autonomous in order to obtain a robust and scalable 
system. We also acknowledge the need for a tight coupling 
between the modules to coordinate and produce the desired 
global behavior. However it is not desirable to coordinate at 
the level of the individual motor control command, because 
involving other modules in low level control will produce a 
less responsive system. Therefore, we abstract away the low 
level control and coordinate at a higher level. We coordinate 
at the level of roles. In the following we will define what a 
role is. We will describe the algorithm a module uses to play 
a role, and finally we will discus how modules can decide to 
change roles over time. 

3.1   A Role 
A role consists of three components. The first component 

is a function A{t) that specffies the joint angles of a module 
given an integer t € [0 : T], where T is the period of the 
motion and the second component that needs to be specified. 
The third component is a set of delays D. A delay ck £ D 
specifies the delay between the child connected to connector 
i and the parent. That is, if the parent is at step tparent = *i 
the child is at tchUd = (ti —di+T) modulus T. 
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t - 0 
while (1) 

if {t=d_l) then <8end signal to child connector 1> 

if (t«d_n) then <send signal to child connector n> 

if <signal received from parent connector> then 
t-0 

endif 

<perfonn action A(t)> 
t - (t+l) modulus T 

endwhile 

Figure 2: The algorithm used to play a role. Refer 
to section 3.2 for further explanation. 

3.2   Playing a Role 
The algorithm that we are now about to describe is used 

to make a module play a role. However first some assump- 
tions need to be made: a parent connector is specified and 
the remaining connectors are considered child connectors, 
connections can only be made between a parent connector 
and a child connector. These assumptions limit the con- 
figuration the algorithm can handle to tree configurations. 
Under these assumptions a role is played using the algorithm 
shown in Figure 2. 

Ignoring the if-statements in the beginning of the loop, 
the module repeatedly goes through a sequence of actions 
parameterized by t. This part of the algorithm alone makes 
a single module repeatedly perform the sequence of actions 
specified by A{t). However, in order to achieve coherent 
global behavior the module needs to be synchronized with 
neighbors. Therefore, at tpannt = di a signal is sent through 
child connector i. Note that it does not matter to the parent 
if a child module actually receives the signal, because in that 
case the signal will just be lost. However, if child i receives 
the signal it sets tchud-i = 0. This enforces that the child 
is delayed dt compared to the parent. 

A simple rule that will come in handy when we calculate 
the delays for a specific locomotion pattern is that we can 
calculate what step a child tchUd-i is at based on what step 
the parent tparent is at: 

tparent — tl      =>       tchild-i = tl — di 

The other way: 

tchild = tl ^parent = ti + di 

(1) 

(2) 

In terms of execution time we can see that firom the time 
the modules are connected, it takes time proportional to 
the height of the tree for all the modules to synchronize. 
However, once the modules are synchronized, the algorithm 
keeps the modules synchronized using only constant time. 
Below is an example of a caterpillar role. 

A(t) 

dnorth 

T 

-{ 
pitch{t) 
yaw{t) =   0 

50° sin(^t) 

T 
5 
180 

(3) 

(4) 

(5) 

r - <start role> 
t-0 
while(l) 

if (t-d(r)_l)  then 
<send message M(r,l) to child connector 1> 
<update r> 

endif 

if (t-d(r)_n)  then 
<send message M(r,n) to child connector n> 
<update r> 

endif 

if <messeLge m received from parent connector> then 
t-0 
<update r based on m> 

endif 

<perform action A(r,t)> 
t - (t+l) modulus T(r) 

endwhile 

Figure 3: The algorithm used to enable modules 
to play different roles depending on their position 
in the configuration tree. Refer to section 3.3 for 
further explanation. 

In earlier work we have demonstrated that when the mod- 
ules are connected in a chain and all play this role they 
produce caterpillar like locomotion [15]. In this work we 
also demonstrated a locomotion pattern similar to that of a 
sidewinder snake. 

3.3   Combining Roles 
In simple locomotion gaits only one role is needed to ob- 

tain the desired global behavior. However, in more complex 
locomotion patterns more roles will be needed. For instance, 
in a walking robot the following roles can be identified: left 
leg, right leg, and spine. In order to handle these more com- 
plex locomotion patterns we need to extend our algorithm. 

It is obvious that we have to define each of the roles needed 
to produce the desired global behavior. For each role r we 
supply an action sequence A(r,t), a period T(r), and a set 
of delays D{r). We also need to define how a module decides 
when to change role. 

A module can change its role in two ways. One way is as a 
reaction to changes in the local configuration. The other way 
is in response to a message fi-om the parent. We encode the 
information needed to make these decisions into the commu- 
nication signals that are already part of the synchronization 
mechanism. It does not make sense to implement it as a 
separate communication mechanism for two reasons. 1) It 
is of no value to the module to know what role to play be- 
fore it is synchronized. 2) It adds more complexity to the 
system. The resulting algorithm is shown in Figure 3. 

The algorithm looks very similar to the basic algorithm. 
The main difference is that now the synchronization signal 
contains a message that is a function M{r, i) of the role r 
the module is playing and the connector i the message is 
sent through. This function can be used to uniquely specify 
what role each module in the system should play. The other 
difference is that based on the success of communication 
the module can detect its local configuration and use this 
information to update its role appropriately. 
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Yaw 

Pitch 

Figure 4: A schematic overview of the CONRO 
module. The connectors are labeled with compass 
directions. The arrows indicate the direction of in- 
creasing angle. 

-100 

Figure 5: The motion of a module playing the leg 
role (top) and the spine role (bottom) visualized in 
joint space. 

4. THE CONRO MODULES 
For our experiments we use a self-reconfigurable robot 

made from the CONRO modules developed at University 
of Southern California's Information Sciences Institute [3, 
5] (see figure 1). The modules axe roughly shaped as rect- 
angular boxes measuring 10cm x 4.5cm x 4.5cm and weigh 
lOOgrams. The modules have a female connector located 
at one end facing south and three male connectors located 
at the other end facing east, west, and north (see Figure 
4). Each connector has an infra-red transmitter and re- 
ceiver used for local communication and sensing. The mod- 
ules have two controllable degrees of freedom: pitch (up and 
down) and yaw (side to side). Processing is taken care of 
by an onboard Basic Stamp 2 processor. The modules have 
onboard batteries, but these do not supply enough power for 
the experiments reported here and therefore the modules are 
powered through cables. Refer to http://www.isi.edu/conro 
for more detcdls and for videos of the experiments reported 
later in this paper. 

5. IMPLEMENTING A WALKING GAIT 
Our goal is to implement a walking gait in the CONRO 

seU-reconfigmrable robot configured as shown in Figure 6. In 
order to do so we need to define three different roles: spine, 
east leg, and west leg. The two main tasks are to specify 
the action sequences and the delays for each role. We will 
look at these two problems below. 

5.1   Actions 
We start out by specifying the actions for each role. Intu- 

itively the legs should be lifted from the ground when mov- 
ing forward and touching the ground when moving back- 
wards. We use the following motion equation for the east 
legs: 

A{east leg, t) 
pitch{t) 
yaw(t) 

35' 
40' 

' cos(^t) ■ 
'sin(fi) 

•55° 
(6) 

The equation for the west legs is obtained by replacing 
t by 2ir — f giving the same motion, but in the opposite 
direction. Tiiis motion is visualized in Figure 5. 

The spine module between two pairs of legs should bend 
from side to side to increase the length of each step. The 
parameters for this motion are shown below and are also 
visualized in Figure 5. 

A(spine, t) 
pitch{t)   = 
yaw{t)   =■ 

0" 
25°cos(f:i4-7r) (7) 

For simplicity we pick the same period T for all roles. The 
parameter T can later be used to control the locomotion 
speed. 

5.2   Delays 
What is left is to coordinate the motion of the modules. 

The question is how do we get from a general description of 
which modules should be coordinated to the delays needed 
in our algorithm. In a walking robot the left front leg and 
the rear right should be synchronized. The same goes for 
the right front leg and the rear left leg. Also, it would result 
in a more efficient locomotion pattern if the spine modules 
bend to increase the length of each step. 

We configure our modules as shown in Figure 6. We first 
consider the spine module located in the top middle part 
of the figure labeled spine-1. The question is now what 
fraction of a period each child should be delayed. We first 
turn our attention to the front legs: east-1 and west-1. It 
is obvious that the motion of these legs should be half a 
period apart. This way one leg will touch the ground when 
the other is lifted and the other way around. Therefore, the 
delay between the two legs should be T/2 {+nT where n € 
[0 : oo] which we consistently omit from these calculations). 
Given teast~i and twest-i we use equation 2 to calculate 
what t this corresponds to in the spine-1 module. 

(8) 
tspine~l     —     teast-~l ~r deast 
tspine~-l     ^^^     twest—l "r" (Iwest 

Setting the two expressions for tspine~i equal to each other 
we get: 

teast—l "T" (least     —     *west—l ~r (twest (9) 
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Figure 6: The black boxes represent modules. The modules are connected to form a quadruped robot. All 
the modules are named and labeled with compass directions. The expression next to a connector represents 
the delay d across that connector. The delay is expressed in fractions of a period T. For instance, the delay 
associated with the east connector of the spine module is deast = T/4. The expressions located in the center 
of the modules represent the value of t of that module when the spine module spine-1 is at «,pjnc-i = 0. The t 
value of child is calculated using tchUd-i = ^parent - dt where i is the connector to which the child is connected. 
Note that by using the delays shown here the top east leg and bottom west legs are synchronized. This also 
goes for the top west and bottom east leg. 

We exploit that we want the difference between teast- 
and twest-i to be T/2 to find the following constraint: 

communication over a period we pick the following values 
for deaat and dwest that satisfies constraint 10. 

dcaat — dwest      =      f (10) 

A similar consideration leads to the conclusion that the 
front west leg and the rear east leg should be synchronized. 
However the signal to the rear east leg is delayed when it 
goes though the north connector as well. Given teast-2 and 
tweat-i we again using rule 2 to transform into tspinc-i- 

ttpine-\      —     twest-1 + dwest (11) 

*»ptne-l     =     teast-2-h deast + dnorth (12) 

Setting the two expressions for t,pine-i equal to each other 
we get: 

T 
4 

3r 
4 

(15) 

(16) 

Now all the delays are specified, but there is one piece 
missing. We have to make sure that the spine also is coordi- 
nated. We know from the spine motion defined in equation 
7 that the spine is bent most to the east at tspine-2 = T/2. 
The east legs are closest together at teast-2 = T/4 (see equa- 
tion 6). We want the difference between t,pi„e_2 and teasi-2 
to be zero. Again applying equation 2 we transform tea,t-2 
into tspine-2' 

twcst-1 + dwest     =     teast-2 + deast + dnorth (13) 

We exploit that we want twest-i — teast-2 = 0 and equa- 
tion 10 to obtain: 

w -    ^ O'north      —      "^ (14) 

Using our knowledge about how the legs should be syn- 
chronized we have come up with constramts for the delays. 
We know that a module playing the spine role receives a mes- 
sage from the parent at i = 0 and has to send one through 
the north connector at t = T/2. In order to spread out the 

tspine-2     —      — + teast-2 (17) 

tspine-2     =     T/2 (18) 

Setting the two equations equal to each other we in fact 
sec that our choice for teast rneikes sure that the spine is 
indeed making the robot take longer steps. These results 
arc simmiarized in Figure 6. 

We have now calculated the delays for the spine module. 
If feet-modules were connected to the legs we would have to 
calculate delays for the legs as well. However, we are not 
planning to connect any modules so for simplicity we just 
give the leg modules the same delays as the spine modules. 
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5.3   Role selection 
Now all the modules are synchronized and can play the 

role of a spine, a east leg, or west leg. The question is now 
how each module decides what part it plays. We have to de- 
fine the function M{r, i) that maps a role r and a connector 
i to a message. In our simple configuration we define M as: 

M{r,i) — i,    wherei € {south, east, west}        (19) 

This intuitively means that a message contains informa- 
tion about which connector it was sent through. Upon re- 
ceiving a mess^e m, the role selection is straight forward: 

•—f 

r{m)   = ■{ 
west leg,   if   m = west 
east leg,   if   m = east (20) 

spine,   if   m = south 

These role selection rules correctly £issign the roles to mod- 
ules, even if the modules are interchanged. There is one 
notable exception. The root of the tree never receives any 
messages, because it by definition does not have a parent. 
Therefore we need to introduce rules that based on the local 
configuration can detect if a module is the root and therefore 
should play the spine role. In the quadruped configuration 
this is easy. We simply say that if the module successfully 
communicate with a child connected either to the west or 
east connector, the module changes its role to a spine role 
(if it is not already a spine module). 

The role selection rules are arbitrary since many role se- 
lection rules and functions M exist that would lead to the 
same behavior. In systems where there are more roles more 
efibrt has to be put into defining rules to make sure the rules 
are not ambiguous. 

6.   EXPERIMENTS 
In general, it is problematic to report performance of a 

self-reconfigurable system, because there is such a tight cou- 
pling between hardware and software. In this work we re- 
port scalability of the algorithm. Furthermore we report the 
length of our programs as a measure of the complexity of the 
control algoritlma. We also report the speed of the walking 
gaits, but this should only be considered an example, the 
reason being that in our system the limiting factors are how 
robust the modules physically are, how powerful the mo- 
tors are, and how much power we can pull firom the power 
source. To report a top speed is not meaningful before the 
robot runs autonomously on batteries. 

6.1   Quadruped Locomotion 
In the first experiment we assembled the modules in the 

quadruped configuration shown in Figure 7. We then mear 
sured the time it took for the robot to walk a distance of 
150cm. We found that the average of ten trials was lO.Qsec- 
onds and the standard deviation was 0.57seconds. This cor- 
responds to a speed of 13.8cm/second. 

The main loop of the program excluding comments and 
labels takes up 120 lines of code. The initialization part 
contmns 32 lines of code. The small size of the program 
emphasizes the point that the control algorithm is simple 
and minimal. In this system we can replace modules or 
move them around as desired, because they will pick the 
right role and synchronize correctly no matter where they 
are placed in the configuration. 
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Figure 7: The robot performing quadruped loco- 
motion. The wires connected to each module only 
provide power. 

6.2   Hexapod Locomotion 
We extended the quadruped with an extra pair of leg and a 

spine module to obtain a hexapod robot. This configuration 
can be seen in Figure 8. Note that the controllers of the 
module do not need to be changed, because the delays make 
sure that the third pair of legs is appropriately delayed. We 
repeated the experiments another ten times and found that 
the average time was 12.0seconds (12.5cm/sec.) and the 
standard deviation was 0.57seconds. 

Initially we tested the hjT)othesis that the speed of the 
robot is independent of the number of modules. Unfortu- 
nately Student's t-test rejected this hypothesis (test proba- 
biUty 3.0* 10~^). From close observation of the experiments 
we found that the quadruped robot makes longer step, be- 
cause it slides a little forward with each step due to its mo- 
mentum. In the hexapod this is not the case, because of the 
firiction caused by the extra pair of legs. In order to remove 
this difference from our data we returned to the videos of 
the experiments and counted the number of steps taken by 
the robot in each experiment. We divided the time with 
the number of steps to produce a time per step measure. 
We then tested the hypothesis that the time per step is the 
same for both the quadruped and hexapod walker. This hy- 
pothesis was accepted on the 5% confidence level with test 
probability 0.78. This implies that the speed of the system 
does not dependent on the number of modules and therefore 
the algorithm scales. If we had more modules avmlable we 
could extend the robot to make a 2n-legged walker. The 
algorithm can handle this because after the initial synchro- 
nization it only takes constant time per period to keep the 
modules synchronized. 

7.   DISCUSSION 
The system achieves a high level of performance because 

we use a less aggressive synchronization mecheinism. In- 
tuitively the idea is that as long as each module keeps its 
chfldren synchronized each period then all the modules wUl 
become and stay synchronized over time. This idea only 
works if it can be assumed that one period of motion takes 
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Figure 8: The robot performing hexapod locomo- 
tion. Tlie wires connected to each module only pro- 
vide power. 

the same amount of time for all modules otherwise the mod- 
ules will keep getting out of synchronization. To insure that 
the i>eriods take the same amotmt of time is not a problem 
in our simple system, but as the system grows more com- 
plex and the module's resources are needed for other tasks 
it will be necessary to put some extra work into making the 
timing of each period precise enough. Forttmately, this can 
be achieved by using timers or interrupts. 

When the modules are synchronized they can stay syn- 
chronized for some cycles without commimicating, because 
the time to complete a cycle is approximately the same for 
all modules. This means that it does not matter much if a 
synchronization signal is lost as long as one makes it through 
from time to time. 

In the algorithm the root module of the configuration tree 
emerges as the leader of the robot. This does not mean that 
there is a single point of failure, because if the root module 
fails its children will take over. In this situation each child 
will become the root of its own sub-tree. However, it can of 
course not be guaranteed that these sub-trees remain syn- 
chronized. This simple implicit leader selection mechanism 
is very powerful, but unfortunately it doesn't work if the 
configuration contains loops. In a loop synchronization sig- 
nals can chase each other around without ever reaching each 
other. In [15] we have solved this problem by introducing 
IDs and combining a simple leader selection algorithm with 
the basic role playing algorithm. 

Another point to note is that the action sequences are just 
open loop motor control commands. This is not desirable 
if the robot is to operate in complex environments where 
sensor feedback is essential to the survival of the robot. The 
method can be extend to include this form of feedback. For 
instance, the cyclic motion of a leg can be biased by feedback 
from the environment. This way the legs c£in change the 
motion to avoid obstacles or gaps. Including sensor feedback 
at the level of the individual module will only make the robot 
able to deal with problems that can be solviBd at the level of 
the individual module. If the robot has to avoid an obstacle 
it requires coordinated actions of all the modules to avoid 
the obstacle. A basic approach we have investigated in [16] 

is to let all the modules sheire sensor information through 
propagation. Each module then changes its role locally to 
react to this sensor information. 

Finally another interesting question is: can this algorithm 
be generalized to a system without a parent-child relation- 
ship. In a real environment a single module should be able 
to influcmce the control of the entire robot based on some 
critical sensor information only that module has access to. 
How to do that is the focus of our future research. 

8. SUMMARY 
We have introduced a general multiagent based algorithm 

that can be used to implement locomotion patterns in a self- 
rcconfigurable robot. In this algorithm each module plays 
a no/e. The role cjm be changed either by communication 
from a parent module or by detecting changes in the local 
configuration. It has been described how modules playing 
roles are synchronized. We have used this general algorithm 
to implement a walking gait in a self-reconfigurable robot 
consisting of up to 9 modules. We show in experiments 
that the implemented algorithm scales and is an efficient 
implementation of both a quadruped and hexapod gait. 
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Abstract We present a general distributed control algorithm for achieving 
locomotion of a self-reconfigurable robot. In this algorithm each module con- 
tinuously performs a cyclic sequence of actions with a period T. When a spec- 
ified fraction of this period d has elapsed a signal is sent to all child modules. 
Upon receiving this signal the child module resets its action sequence making 
It delayed d compared to its parent. The algorithm is minimal and robust to 
loss of synchronization signals and change in the number of modules. We show 
m three different experiments that the algorithm can be used to implement a 
caterpillar, a sidewinder, and a rolling wheel gait in a real self-reconfigurable 
robot consisting of eight modules. 

1   Introduction 

Reconfigurable robots are robots made from a possibly large number of independent modules 
connected to form a robot. If the modules from which the reconfigurable robot is built are 
able to connect and disconnect without human intervention the robot is a self-reconfigurable 
robot. Examples of physically realized self-reconfigurable robots can be found in [8 6 9 15 
13,11,7]. I .  .  .    , 

Several potential advantages of self-reconfigurable robots over traditional robots have 
been pointed out in literature: 

- VersataUy. The modules can be combined in different ways making the same robotic 
system able to perform a wide range of tasks. 

- AdaptabiUty. While the self-reconfigurable robot performs its task it can change its 
physical shape to adapt to changes in the environment. 

- Robustness. Self-reconfigurable robots consist of many identical modules and there- 
fore if a module breaks down it can be replaced by another. 

- Cheap production. When the final design for the basic module has been obtained it 
can be mass produced and thereby keep the cost of the individual module low. 

Self-reconfigurable robots can solve the same tasks as traditional robots, but as Yim et 
al [15] point out; in applications where the task and environment are given a priori it is 
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often cheaper to build a special purpose robot. Therefore, applications best suited for self- 
reconfigurable robots are applications where some leverage can be gained from the special 
abilities of self-reconfigurable robots. The versatility of these robots make them suitable in 
scenarios where the robots have to handle a range of tasks. The robots can also handle tasks 
in unknown or dynamic environments, because they are able to adapt to these environments. 
In tasks where robustness is of importance it might be desirable to use self-reconfigurable 
robots. Even though real applications for self-reconfigurable robots still are to be seen, a 
number of applications have been envisioned [11, 15]: fire fighting, search and rescue after 
an earthquake, battlefield reconnaissance, planetary exploration, undersea mining, and space 
structure building. Other possible applications include entertainment, service robotics, and 
payload management. 

The potential of self-reconfigurable robots can be realized if several challenges in terms 
of hardware and software can be met. In this work we focus on one of the challenges in 
software: how do we make a large number of connected modules perform a coordinated 
global behavior? Specifically we address how to design algorithms that will make it possible 
for self-reconfigurable robots to locomote efficiently. In order for a locomotion algorithm 
to be useful it has to preserve the special properties of these robots. From the advantages 
and applications mentioned above we can extract a number of guidelines for the design of 
such a control algorithm. The algorithm should be distributed to avoid having a single point 
of failure. Also the performance of the algorithm should scale with an increased number 
of modules. It has to be robust to reconfiguration, because reconfiguration is a fundamental 
capability of self-reconfigurable robots. Finally, it is desirable to have homogeneous software 
running on all the modules, because it makes it possible for any module to take over if another 
one fails. 

It is an open question if a top-down or a bottom-up approach gives the best result. We 
find that it is difficult to design the system at a global level and then later try to distribute 
it, because often properties of the hardware are ignored and a slow robotic system might be 
the result. Therefore, we use a bottom-up approach where the single module is the basic 
unit of design. That is, we move from a global design perspective to a bottom-up one where 
the important design element is the individual module and its interactions with its neighbors. 
The global behavior of the system then emerges from the local interaction between individual 
modules. A similar approach is also used by Bojinov et al [1]. 

2   Related Work 

In the related work presented here we focus on control algorithms for locomotion of self- 
reconfigurable robots. 

Yim et al [14, 15] demonstrate caterpillar like locomotion and a rolling track. Their 
system is controlled based on a gait control table . Each column in this table represents the 
actions performed by one module. Motion is then obtain by having a master synchronizing 
the transition from one row to the next. The problem with this approach is that the amount of 
communication needed between the master and the modules will limit its scalability. Another 
problem is the need for a central controller, since it gives the system a single point of failure. 
If there is no master it is suggested that the modules can be assumed to be synchronized in 
time and each module can execute its column of actions open-loop. However, since all the 
modules are autonomous it is a questionable assumption to assume that all the modules are 
and can stay synchronized. In order to use the gait control table each module needs to know 
what column it has to execute. This means that the modules need IDs. Furthermore, if the 
configuration changes or the number of modules changes the table has to be rewritten. 
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Shen, Salemi, and others propose to use artificial hormones to synchronize the modules 
to achieve consistent global locomotion. In earlier versions of the system a hormone is prop- 
agated through the self-reconfigurable system to achieve synchronization [11]. In later work 
the hormone is also propagated backwards making all modules synchronized before a new 
action is initiated [12, 10]. This synchronization takes time 0{n) where n is the number of 
modules. This slows down the system considerably, because it has to be done before each 
action. Also, the entire system stops working if one hormone is lost. This a significant 
problem, because a hormone can easily be lost due to unreliable communication, a module 
disconnecting itself before a response can be given, or a module failure. In fact, the system 
has n-points of failure which is not desirable. The earlier version is better in this sense, but 
still performance remains low because a synchronization hormone is sent before each action. 

In our system all modules repeatedly go through a cyclic sequence of joint angles de- 
scribing a motion. This sequence could come from a column in a gait control table, but in our 
implementation the joint angles are calculated using a cyclic function with period T. Every 
time a module has completed a given fraction d of the period a message is sent through the 
child connectors. If the signal is received the child module resets its action sequence making 
it delayed d compared to the parent. This way the actions of the individual module are de- 
coupled from the synchronization mechanism resulting in a faster and more reliable system. 
Furthermore, there is no need to make changes to the algorithm if the number of modules 
changes. 

3   General Control Algorithm 

We assume that the modules are connected to form a tree structure, that a parent connector is 
specified, and that this connector is the only one that can connect to child connectors of other 
modules. Furthermore, we assume that the modules can communicate with the modules to 
which they are connected. 

The algorithm is then used by specifying three components. The first component is a 
cyclic action sequence A{t). This sequence describes the actions that each module is to repeat 
cycle after cycle. The second, is the period T of this cycle. The third, is a delay d. This delay 
specify the fraction of a period the children's action sequences are delayed compared to their 
parents. The skeleton algorithm looks like this: 

t = 0 
while(1) { 

if (t=d) then <send signal to child connectors> 
if <signal received from parent> then t=0 
<perform action A(t)> 
t = (t+l) modulus T 

} 

Ignoring the first two lines of the loop, the module repeatedly goes through a sequence 
of actions parameterized by the cyclic counter t. This part of the algorithm alone can make 
a single module repeatedly perform the specified sequence of actions. In order to coordinate 
the actions of the individual modules to produce the desired global behavior the modules need 
to be synchronized. Therefore, at step t = da. signal is send through all child connectors. 
Note that it does not matter if a child module is actually connected or not. If a child receives 
a signal it knows that the parent is at t = d and therefore sets its own step counter to t = 0. 
This enforces that the child is delayed d compared to its parent. 
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From the time the modules are connected it takes time proportional to d times the height 
of the tree for all the modules to synchronize. To avoid problems with uncoordinated modules 
initially we make sure the modules do not start moving until they receive the first synchro- 
nization signal. After the start-up phase the modules stay synchronized using only constant 
time. 

4 Experimental Setup 

To evaluate our algorithm we conducted several experiments using the CO>fRO modules 
shown in Figure 1. The CONRO modules have been developed at USC/ISI [3, 5]. The 
modules are roughly shaped as rectangular boxes measuring 10cm x 4.5cm x 4.5cm and 
weigh lOOgrams. The modules have a female connector at one end and three male connectors 
located at the other. Each connector has a infra-red transmitter and receiver used for local 
communication and sensing. The modules have two controllable degrees of freedom: pitch 
(up and down) and yaw (side to side). Processing is taken care of by an onboard Basic Stamp 
2 processor. The modules have onboard batteries, but these do not supply enough power for 
the experiments reported here and therefore the modules are powered through cables. Refer 
to http://www.isi.edu/conro for more details and videos of the experiments reported later. 

5 Experiments 

In general, it is a problem how to report performance of a specific part of a self-reconfigurable 
system because there is such a tight coupling between hardware and software. In this work 
we choose to report the length of our programs as a measure of the complexity of the control 
algorithm. This metric is used to support our claim that this control system is minimal. 
We also report the speed of the locomotion patterns, but this should only be considered an 
example, the reason being that in our system the limiting factors are how robust the modules 
physically are, how powerful the motors are, and how much power we can pull from tiie 
power source. To report a top speed is not meaningful before we run the robot autonomously 
on batteries. 

5.1    Caterpillar Locomotion 

We connect eight of our modules in a chain and designate the male opposite the female 
connector to be the parent connector. We then implement the algorithm described above with 
the following parameters. 

(1) 

The motor control of our modules makes the motor go to the desired position as fast as 
possible. This means that way-points have to be specified to avoid jerky motion. The period 
T can be used to control the number of way-points and therefore the smoothness and speed 
of the motion. The action sequence is an oscillation around 0° with an amplitude of 50° and 
the yaw joint is kept straight. Each module is delayed one fifth of a period compared to its 
parent. 

The modules are connected and after they synchronize a sine wave is traveling along the 
length of the robot. Refer to Figure 1. This produces caterpillar like locomotion at a speed 
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Figure 1: A CONRO module (left). A snapshot of caterpillar like locomotion (right). 

of 0.13km/h. Note, that it is easy to adjust the parameters of this motion. For instance, the 
length of the wave can be controlled using the delay. The program is simple. The main 
loop contains 16 lines of code excluding comments and labels. The initialization including 
variable and constant declaration amounts to 18 lines of code. 

5.2   Sidewinder Locomotion 

We now turn our attention to a locomotion pattern similar to that of a sidewinding snake. A 
detailed mathematical analysis of this motion pattern has been reported in [2]. Here we just 
use the intuition that by having modules moving to one side lifted and those moving to the 
other touching the ground a sidewinder like motion is achieved. The result can be seen in 
Figure 2. The sidewinder moves at 0.24km/h. The main loop and the initialization contain 
respectively 19 and 17 lines of code. The parameters used are: 

T   =   180 
pitch{t)   =   20°cos{^t) 
yaw{t)   =   50°sinAt) ^^^ 

T 
5 d   = 

5.3   Rolling Track Locomotion 

If we maintain that each module can only have one parent, but remove the assumption that 
the structure forms a tree we include loops as structures that can be handled. The rolling 
track is an example of such a configuration. However, this poses a problem to our algorithm. 
In the previous experiments we have exploited the assumption that the modules form a tree 
to implicitly find a conductor. The conductor being the root of the configuration tree. This 
is a simple mechanism that guarantees that there is one and only one conductor. In a loop 
configuration this is not the case. 

One solution to this problem is to introduce IDs. In our implementation we just make 
the modules pick a random number and use that as ID. It is not guaranteed to find a unique 
conductor, but it is a simple solution that works in most cases. The short comings of this 
approach can easily be avoided if each module has a unique serial number. 

The synchronization part of the algorithm now works as before, but it is combined with 
a simple well-known distributed leader election algorithm [4]. The signals from parent to 
child now contains a number which is the ID of the module originally sending the signal. 
Upon receiving a signal a module compares the signal's number to its ID. If it is higher the 
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Figure 2: A snapshot of sidewinder like locomotion (left) and the rolling track (right). 

module is synchronized and the signal and its ID is propagated along with the synchronization 
signal. Otherwise, the module consider itself the conductor and ignores the signal. After 
the system has settled the module with the highest ID dictates the iliythm of the locomotion 
pattem. The leader election algorithm runs continuously which means that the system quickly 
synchronizes if modules are replaced. The advantage of combining the algorithms is that 
there is no need to detect if the conductor fails. 

We used this algorithm to implemented the rolling track which can be seen in Figure 2. 
The rolling track is the fastest gait and achieves a speed of O.SOkm/h. The program is now a 
little more complex and the main loop and initialization contain respectively 35 and 28 lines 
of code. The parameters for the eight module rolling track is: 

T   =   180 

pitch{t)   =   I gQo 

yaw{t)   =   0 

sin(^t)) 
(3) 

Unlike the sidewinder and the caterpillar this control algorithm only works with 8 mod- 
ules, because of the physical constraint. It might be possible to make a more general solution 
by making pitch{t) and d a function of the number of modules. The number of modules in 
the loop could be obtained by the conductor by including a hop count in the signal. 

6 Handling a General Configuration 

We saw in the previous section that we had to introduce IDs to find a unique conductor in 
a configuration that contains loops. Introducing the ID mechanism unfortunately ruins the 
opportunity to use the synchronization algorithm to automatically find a conductor in a tree 
structure. In fact, the loop algorithm will fail in this situation unless the module with the high- 
est ID also happens to be the root. In order to make a general algorithm the synchronization 
signal has to be propagated both upwards and downwards in the tree. 

7 Discussion 

We have presented a general control algorithm and presented examples of how it can be used 
to achieve three different locomotion patterns. We will now discus some of the properties of 
this control algorithm. 

An important issue in the design of control algorithms for self-reconfigurable robots is if 
the algorithm scales with the number of modules. The presented algorithm is only initially 
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dependent on the number of modules, because it decides how long time it takes for the syn- 
chronization signal to be propagated through the system. After this start-up phase the time it 
takes to keep the modules synchronized is independent of the number of modules implying 
that the algorithm scales. Furthermore, all modules run identical programs making it easier to 
manage the development process when programming systems consisting of many modules. 

The modules of the robot are only loosely coupled through the synchronization signal 
and therefore the system is highly robust to changes in the number of modules. In fact, 
the caterpillar can be divided in two and both parts still work. If they are reconnected in a 
different order they will quickly synchronize to behave as one long caterpillar again. This also 
implies that the system is robust to module failure. If a module is defect and it can be detected 
this module can be ejected from the system and the remaining modules when reconnected can 
continue to perform. Finally, if a synchronization signal is lost it is not crucial for the survival 
of the system. If a signal is lost it just means that the receiving module and its children will 
be synchronized a period later. 

In the algorithm the synchronization signal is only sent once per period. This means 
that in order for the modules to stay synchronized the time to complete a period has to be 
the same for all modules.In the experiments presented here the cycles take the same amount 
of time, but in more complex control systems where other parts of the control system use 
random amounts of computation time this can not be assumed to be true. This problem can 
easily be handle by using timers. Even though timers are not precise enough to keep modules 
synchronized over a long period of time they can be used for this purpose. 

8 Future Work 

Our future work will go along two lines. Can the algorithm handle more complex loco- 
motion patterns? We suspect it can be achieved by using different delays through different 
connectors. For instance, in a multi-legged robot where the head is the conductor, the syn- 
chronization signal could travel along the spine modules. When a spine module receives a 
signal It can first propagate it to the left leg and then the right before propagating the signal 
to the next spine module. 

Another issue is that if the self-reconfigurable robot is to locomote automatically in a 
real complex environment the control algorithm has to be able to take feedback from the 
environment into account. A first step in this direction could be to mount sensors on the side 
of the caterpillar robot and use these to control the yaw joint of the modules. 

9 Conclusion 

We have presented a general control algorithm for self-reconfigurable robots. The algorithm 
has the following properties: distributed, scalable, homogeneous, and minimal. We have 
shown how the algorithm easily can be used to implement a caterpillar and a sidewinder 
like locomotion pattern. Furthermore, we have seen that with the introduction of IDs in the 
modules it is possible to handle loop configurations. We have demonstrated this using the 
rolling track as an example. Finally, we have pointed out interesting lines for fiiture research. 
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